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Abstract. This paper provides an architectural overview of the first release of the Avalanche platform,

codenamed Avalanche Borealis. For details on the economics of the native token, labeled $AVAX, we5

guide the reader to the accompanying token dynamics paper [2].

Disclosure: The information described in this paper is preliminary and subject to change at any time.

Furthermore, this paper may contain “forward-looking statements.”1
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1 Introduction10

This paper provides an architectural overview of the Avalanche platform. The key focus is on the three key

differentiators of the platform: the engine, the architectural model, and the governance mechanism.

1.1 Avalanche Goals and Principles

Avalanche is a high-performance, scalable, customizable, and secure blockchain platform. It targets three

broad use cases:15

– Building application-specific blockchains, spanning permissioned (private) and permissionless (public)

deployments.

– Building and launching highly scalable and decentralized applications (Dapps).

– Building arbitrarily complex digital assets with custom rules, covenants, and riders (smart assets).

1 Forward-looking statements generally relate to future events or our future performance. This includes, but is not

limited to, Avalanche’s projected performance; the expected development of its business and projects; execution

of its vision and growth strategy; and completion of projects that are currently underway, in development or

otherwise under consideration. Forward-looking statements represent our management’s beliefs and assumptions

only as of the date of this presentation. These statements are not guarantees of future performance and undue

reliance should not be placed on them. Such forward-looking statements necessarily involve known and unknown

risks, which may cause actual performance and results in future periods to differ materially from any projections

expressed or implied herein. Avalanche undertakes no obligation to update forward-looking statements. Although

forward-looking statements are our best prediction at the time they are made, there can be no assurance that they

will prove to be accurate, as actual results and future events could differ materially. The reader is cautioned not

to place undue reliance on forward-looking statements.



2 Kevin Sekniqi, Daniel Laine, Stephen Buttolph, and Emin Gün Sirer

The overarching aim of Avalanche is to provide a unifying platform for the creation, transfer, and trade of20

digital assets.

By construction, Avalanche possesses the following properties:

Scalable Avalanche is designed to be massively scalable, robust, and efficient. The core consensus engine

is able to support a global network of potentially hundreds of millions of internet-connected, low and high-

powered devices that operate seamlessly, with low latencies and very high transactions per second.25

Secure Avalanche is designed to be robust and achieve high security. Classical consensus protocols are

designed to withstand up to f attackers, and fail completely when faced with an attacker of size f + 1 or

larger, and Nakamoto consensus provides no security when 51% of the miners are Byzantine. In contrast,

Avalanche provides a very strong guarantee of safety when the attacker is below a certain threshold, which

can be parametrized by the system designer, and it provides graceful degradation when the attacker exceeds30

this threshold. It can uphold safety (but not liveness) guarantees even when the attacker exceeds 51%. It is

the first permissionless system to provide such strong security guarantees.

Decentralized Avalanche is designed to provide unprecedented decentralization. This implies a commitment

to multiple client implementations and no centralized control of any kind. The ecosystem is designed to avoid

divisions between classes of users with different interests. Crucially, there is no distinction between miners,35

developers, and users.

Governable and Democratic $AVAX is a highly inclusive platform, which enables anyone to connect to its

network and participate in validation and first-hand in governance. Any token holder can have a vote in

selecting key financial parameters and in choosing how the system evolves.

Interoperable and Flexible Avalanche is designed to be a universal and flexible infrastructure for a multitude40

of blockchains/assets, where the base $AVAX is used for security and as a unit of account for exchange. The

system is intended to support, in a value-neutral fashion, many blockchains to be built on top. The platform

is designed from the ground up to make it easy to port existing blockchains onto it, to import balances, to

support multiple scripting languages and virtual machines, and to meaningfully support multiple deployment

scenarios.45

Outline The rest of this paper is broken down into four major sections. Section 2 outlines the details of the

engine that powers the platform. Section 3 discusses the architectural model behind the platform, including

subnetworks, virtual machines, bootstrapping, membership, and staking. Section 4 explains the governance

model that enables dynamic changes to key economic parameters. Finally, in Section 5 explores various

peripheral topics of interest, including potential optimizations, post-quantum cryptography, and realistic50

adversaries.
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Naming Convention The name of the platform is Avalanche, and is typically referred to as “the Avalanche

platform”, and is interchangeable/synonymous with “the Avalanche network”, or – simply – Avalanche.

Codebases will be released using three numeric identifiers, labeled “v.[0-9].[0-9].[0-100]”, where the

first number identifies major releases, the second number identifies minor releases, and the third number55

identifies patches. The first public release, codenamed Avalanche Borealis, is v. 1.0.0. The native token

of the platform is called “$AVAX”. The family of consensus protocols used by the Avalanche platform is

referred to as the Snow* family. There are three concrete instantiations, called Avalanche, Snowman, and

Frosty.

2 The Engine60

Discussion of the Avalanche platform begins with the core component which powers the platform: the

consensus engine.

Background Distributed payments and – more generally – computation, require agreement between a set

of machines. Therefore, consensus protocols, which enable a group of nodes to achieve agreement, lie at the

heart of blockchains, as well as almost every deployed large-scale industrial distributed system. The topic65

has received extensive scrutiny for almost five decades, and that effort, to date, has yielded just two families

of protocols: classical consensus protocols, which rely on all-to-all communication, and Nakamoto consensus,

which relies on proof-of-work mining coupled with the longest-chain-rule. While classical consensus protocols

can have low latency and high throughput, they do not scale to large numbers of participants, nor are they

robust in the presence of membership changes, which has relegated them mostly to permissioned, mostly70

static deployments. Nakamoto consensus protocols [5, 7, 4], on the other hand, are robust, but suffer from

high confirmation latencies, low throughput, and require constant energy expenditure for their security.

The Snow* family of protocols, introduced by Avalanche, combine the best properties of classical con-

sensus protocols with the best of Nakamoto consensus. Based on a lightweight network sampling mechanism,

they achieve low latency and high throughput without needing to agree on the precise membership of the75

system. They scale well from thousands to millions of participants with direct participation in the consen-

sus protocol. Further, the protocols do not make use of PoW mining, and therefore avoid its exorbitant

energy expenditure and subsequent leak of value in the ecosystem, yielding lightweight, green, and quiescent

protocols.

Mechanism and Properties The Snow* protocols operate by repeated sampling of the network. Each node80

polls a small, constant-sized, randomly chosen set of neighbors, and switches its proposal if a supermajority

supports a different value. Samples are repeated until convergence is reached, which happens rapidly in

normal operations.

We elucidate the mechanism of operation via a concrete example. First, a transaction is created by

a user and sent to a validating node, which is a node participating in the consensus procedure. It is then85

propagated out to other nodes in the network via gossiping. What happens if that user also issues a conflicting
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transaction, that is, a doublespend? To choose amongst the conflicting transactions and prevent the double-

spend, every node randomly selects a small subset of nodes and queries which of the conflicting transactions

the queried nodes think is the valid one. If the querying node receives a supermajority response in favor

of one transaction, then the node changes its own response to that transaction. Every node in the network90

repeats this procedure until the entire network comes to consensus on one of the conflicting transactions.

Surprisingly, while the core mechanism of operation is quite simple, these protocols lead to highly

desirable system dynamics that make them suitable for large-scale deployment.

– Permissionless, Open to Churn, and Robust. The latest slew of blockchain projects employ classical

consensus protocols and therefore require full membership knowledge. Knowing the entire set of par-95

ticipants is sufficiently simple in closed, permissioned systems, but becomes increasingly hard in open,

decentralized networks. This limitation imposes high security risks to existing incumbents employing

such protocols. In contrast, Snow* protocols maintain high safety guarantees even when there are well-

quantified discrepancies between the network views of any two nodes. Validators of Snow* protocols

enjoy the ability to validate without continuous full membership knowledge. They are, therefore, robust100

and highly suitable for public blockchains.

– Scalable and Decentralized A core feature of the Snow family is its ability to scale without incurring

fundamental tradeoffs. Snow protocols can scale to tens of thousands or millions of nodes, without dele-

gation to subsets of validators. These protocols enjoy the best-in-class system decentralization, allowing

every node to fully validate. First-hand continuous participation has deep implications for the security105

of the system. In almost every proof-of-stake protocol that attempts to scale to a large participant set,

the typical mode of operation is to enable scaling by delegating validation to a subcommittee. Natu-

rally, this implies that the security of the system is now precisely as high as the corruption cost of the

subcommittee. Subcommittees are furthermore subject to cartel formation.

In Snow-type protocols, such delegation is not necessary, allowing every node operator to have a first-110

hand say in the system, at all times. Another design, typically referred to as state sharding, attempts

to provide scalability by parallelizing transaction serialization to independent networks of validators.

Unfortunately, the security of the system in such a design becomes only as high as the easiest corruptible

independent shard. Therefore, neither subcommittee election nor sharding are suitable scaling strategies

for crypto platforms.115

– Adaptive. Unlike other voting-based systems, Snow* protocols achieve higher performance when the

adversary is small, and yet highly resilient under large attacks.

– Asynchronously Safe. Snow* protocols, unlike longest-chain protocols, do not require synchronicity to

operate safely, and therefore prevent double-spends even in the face of network partitions. In Bitcoin,

for example, if synchronicity assumption is violated, it is possible to operate to independent forks of the120

Bitcoin network for prolonged periods of time, which would invalidate any transactions once the forks

heal.

– Low Latency. Most blockchains today are unable to support business applications, such as trading or daily

retail payments. It is simply unworkable to wait minutes, or even hours, for confirmation of transactions.

Therefore, one of the most important, and yet highly overlooked, properties of consensus protocols is the125

time to finality. Snow* protocols reach finality typically in ≤ 1 second, which is significantly lower than

both longest-chain protocols and sharded blockchains, both of which typically span finality to a matter

of minutes.
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– High Throughput. Snow* protocols, which can build a linear chain or a DAG, reach thousands of transac-

tions per second (5000+ tps), while retaining full decentralization. New blockchain solutions that claim130

high TPS typically trade off decentralization and security and opt for more centralized and insecure

consensus mechanisms. Some projects report numbers from highly controlled settings, thus misreporting

true performance results. The reported numbers for $AVAX are taken directly from a real, fully imple-

mented Avalanche network running on 2000 nodes on AWS, geo-distributed across the globe on low-end

machines. Higher performance results (10,000+) can be achieved through assuming higher bandwidth135

provisioning for each node and dedicated hardware for signature verification. Finally, we note that the

aforementioned metrics are at the base-layer. Layer-2 scaling solutions immediately augment these results

considerably.

Comparative Charts of Consensus Table 1 describes the differences between the three known families

of consensus protocols through a set of 8 critical axes.140

Nakamoto Classical Snow*

Robust (Suitable for Open Settings) + - +

Highly Decentralized (Allows Many Validators) + - +

Low Latency and Quick Finality (Fast Transaction Confirmation) - + +

High Throughput (Allows Many Clients) - + +

Lightweight (Low System Requirements) - + +

Quiescent (Not Active When No Decisions Performed) - + +

Safety Parameterizable (Beyond 51% Adversarial Presence) - - +

Highly Scalable - - +

Table 1. Comparative chart between the three known families of consensus protocols. Avalanche, Snowman, and

Frosty all belong to the Snow* family.

3 Platform Overview

In this section, we provide an architectural overview of the platform and discuss various implementation

details. The Avalanche platform cleanly separates three concerns: chains (and assets built on top), execution

environments, and deployment.

3.1 Architecture145

Subnetworks A subnetwork, or subnet, is a dynamic set of validators working together to achieve consensus

on the state of a set of blockchains. Each blockchain is validated by one subnet, and a subnet can validate

arbitrarily many blockchains. A validator may be a member of arbitrarily many subnets. A subnet decides

who may enter it, and may require that its constituent validators have certain properties. The Avalanche

platform supports the creation and operation of arbitrarily many subnets. In order to create a new subnet150

or to join a subnet, one must pay a fee denominated in $AVAX.
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The subnet model offers a number of advantages:

– If a validator doesn’t care about the blockchains in a given subnet, it will simply not join that subnet.

This reduces network traffic, as well as the computational resources required of validators. This is in

contrast to other blockchain projects, in which every validator must validate every transaction, even155

those they don’t care about.

– Since subnets decide who may enter them, one can create private subnets. That is, each blockchain in

the subnet is validated only by a set of trusted validators.

– One can create a subnet where each validator has certain properties. For example, one could create a

subnet where each validator is located in a certain jurisdiction, or where each validator is bound by some160

real-world contract. This may be benificial for compliance reasons.

There is one special subnet called the Default Subnet. It is validated by all validators. (That is, in order

to validate any subnet, one must also validate the Default Subnet.) The Default Subnet validates a set of

pre-defined blockchains, including the blockchain where $AVAX lives and is traded.

Virtual Machines Each blockchain is an instance of a Virtual Machine (VM.) A VM is a blueprint for a165

blockchain, much like a class is a blueprint for an object in an object-oriented programming language. The

interface, state and behavior of a blockchain is defined by the VM that the blockchain runs. The following

properties of a blockchain, and other, are defined by a VM:

– The contents of a block

– The state transition that occurs when a block is accepted170

– The APIs exposed by the blockchain and their endpoints

– The data that is persisted to disk

We say that a blockchain “uses” or “runs” a given VM. When creating a blockchain, one specifies the VM

it runs, as well as the genesis state of the blockchain. A new blockchain can be created using a pre-existing

VM, or a developer can code a new one. There can be arbitrarily many blockchains that run the same VM.175

Each blockchain, even those running the same VM, is logically independent from others and maintains its

own state.

3.2 Bootstrapping

The first step in participating in Avalanche is bootstrapping. The process occurs in three stages: connection

to seed anchors, network and state discovery, and becoming a validator.180

Seed Anchors Any networked system of peers that operates without a permissioned (i.e. hard-coded)

set of identities requires some mechanism for peer discovery. In peer-to-peer file sharing networks, a set of

trackers are used. In crypto networks, a typical mechanism is the use of DNS seed nodes (which we refer
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to as seed anchors), which comprise a set of well-defined seed-IP addresses from which other members of

the network can be discovered. The role of DNS seed nodes is to provide useful information about the set185

of active participants in the system. The same mechanism is employed in Bitcoin Core [1], wherein the

src/chainparams.cpp file of the source code holds a list of hard-coded seed nodes. The difference between

BTC and Avalanche is that BTC requires just one correct DNS seed node, while Avalanche requires a simple

majority of the anchors to be correct. As an example, a new user may choose to bootstrap the network view

through a set of well established and reputable exchanges, any one of which individually are not trusted.190

We note, however, that the set of bootstrap nodes does not need to be hard-coded or static, and can be

provided by the user, though for ease of use, clients may provide a default setting that includes economically

important actors, such as exchanges, with which clients wish to share a world view. There is no barrier to

become a seed anchor, therefore a set of seed anchors can not dictate whether a node may or may not enter

the network, since nodes can discover the latest network of Avalanche peers by attaching to any set of seed195

anchors.

Network and State Discovery Once connected to the seed anchors, a node queries for the latest set of

state transitions. We call this set of state transitions the accepted frontier. For a chain, the accepted frontier

is the last accepted block. For a DAG, the accepted frontier is the set of vertices that are accepted, yet have

no accepted children. After collecting the accepted frontiers from the seed anchors, the state transitions that200

are accepted by a majority of the seed anchors is defined to be accepted. The correct state is then extracted

by synchronizing with the sampled nodes. As long as there is a majority of correct nodes in the seed anchor

set, then the accepted state transitions must have been marked as accepted by at least one correct node.

This state discovery process is also used for network discovery. The membership set of the network is

defined on the validator chain. Therefore, synchronizing with the validator chain allows the node to discover205

the current set of validators. The validator chain will be discussed further in the next section.

3.3 Sybil Control and Membership

Consensus protocols provide their security guarantees under the assumption that up to a threshold number

of members in the system could be adversarial. A Sybil attack, wherein a node cheaply floods the network

with malicious identities, can trivially invalidate these guarantees. Fundamentally, such an attack can only be210

deterred by trading off presence with proof of a hard-to-forge resource [3]. Past systems have explored the use

of Sybil deterrence mechanisms that span proof-of-work (PoW), proof-of-stake (PoS), proof-of-elapsed-time

(POET), proof-of-space-and-time (PoST), and proof-of-authority (PoA).

At their core, all of these mechanisms serve an identical function: they require that each participant have

some “skin in the game” in the form of some economic commitment, which in turn provides an economic215

barrier against misbehavior by that participant. All of them involve a form of stake, whether it is in the form

of mining rigs and hash power (PoW), disk space (PoST), trusted hardware (POET), or an approved identity

(PoA). This stake forms the basis of an economic cost that participants must bear to acquire a voice. For

instance, in Bitcoin, the ability to contribute valid blocks is directly proportional to the hash-power of the

proposing participant. Unfortunately, there has also been substantial confusion between consensus protocols220
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versus Sybil control mechanisms. We note that the choice of consensus protocols is, for the most part,

orthogonal to the choice of the Sybil control mechanism. This is not to say that Sybil control mechanisms are

drop-in-replacements for each other, since a particular choice might have implications about the underlying

guarantees of the consensus protocol. However, the Snow* family can be coupled with many of these known

mechanisms, without significant modification.225

Ultimately, for security and to ensure that the incentives of participants are aligned for the benefit of

the network, $AVAX choose PoS to the core Sybil control mechanism. Some forms of stake are inherently

centralized: mining rig manufacturing (PoW), for instance, is inherently centralized in the hands of a few

people with the appropriate know-how and access to the dozens of patents required for competitive VLSI

manufacturing. Furthermore, PoW mining leaks value due to the large yearly miner subsidies. Similarly,230

disk space is most abundantly owned by large datacenter operators.Further, all sybil control mechanisms

that accrue ongoing costs, e.g. electricity costs for hashing, leak value out of the ecosystem, not to mention

destroy the environment. This, in turn, reduces the feasibility envelope for the token, wherein an adverse

price move over a small time frame can render the system inoperable. Proof-of-work inherently selects for

miners who have the connections to procure cheap electricity, which has little to do with the miners’ ability235

to serialize transactions or their contributions to the overall ecosystem. Among these options, we choose

proof-of-stake, because it is green, accessible, and open to all. We note, however, that while the $AVAX uses

PoS, the Avalanche network enables subnets to be launched with PoW and PoS.

Staking is a natural mechanism for participation in an open network because it enables a direct economic

argument: the probability of success of an attack is directly proportional to a well-defined monetary cost240

function. In other words, the nodes that stake are economically motivated to not engage in behavior that

might hurt the value of their stake. Additionally, this stake does not incur any additional upkeep costs (other

then the opportunity cost of investing in another asset), and has the property that, unlike mining equipment,

is fully consumed if used in a catastrophic attack. For PoW operations, mining equipment can be simply

reused or – if the owner decides to – entirely sold back to the market.245

A node wishing to enter the network can freely do so by first putting up a stake that is immobilized

during the duration of participation in the network. The user determines the amount duration of the stake.

Once accepted, a stake cannot be reverted. The main goal is to ensure that nodes substantially share the

same mostly stable view of the network. We anticipate setting the minimum staking time on the order of a

week.250

Unlike other systems that also propose a PoS mechanism, $AVAX does not make usage of slashing, and

therefore all stake is returned when the staking period expires. This prevents unwanted scenarios such as

a client software or hardware failure leading to a loss of coins. This dovetails with our design philosophy

of building predictable technology: the staked tokens are not at risk, even in the presence of software or

hardware flaws.255

In Avalanche, a node that wants to participate issues a special stake transaction to the validator chain.

Staking transactions name an amount to stake, the staking key of the participant that is staking, the duration,

and the time that validation will start. Once the transaction is accepted, the funds will be locked until the

end of the staking period. The minimal allowed amount is decided and enforced by the system. The stake

amount placed by a participant has implications for both the amount of influence the participant has in the260
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consensus process, as well as the reward, as discussed later. The specified staking duration, must be between

δmin and δmax, the minimum and maximum timeframes for which any stake can be locked. As with the

staking amount, the staking period also has implications for the reward in the system. Loss or theft of the

staking key cannot lead to asset loss, as the staking key is used only in the consensus process, not for asset

transfer.265

3.4 Smart Contracts in $AVAX

At launch Avalanche supports standard Solidity-based smart contracts through the Ethereum virtual ma-

chine (EVM). We envision that the platform will support a richer and more powerful set of smart contract

tools, including:

– Smart contracts with off-chain execution and on-chain verification.270

– Smart contracts with parallel execution. Any smart contracts that do not operate on the same state in

any subnet in Avalanche will be able to execute in parallel.

– An improved Solidity, called Solidity++. This new language will support versioning, safe mathematics

and fixed point arithmetic, an improved type system, compilation to LLVM, and just-in-time execution.

If a developer requires EVM support but wants to deploy smart contracts in a private subnet, they275

can spin-up a new subnet directly. This is how Avalanche enables functionality-specific sharding through

the subnets. Furthermore, if a developer requires interactions with the currently deployed Ethereum smart

contracts, they can interact with the Athereum subnet, which is a spoon of Ethereum. Finally, if a developer

requires a different execution environment from the Ethereum virtual machine, they may choose to deploy

their smart contract through a subnet that implements a different execution environment, such as DAML280

or WASM. Subnets can support additional features beyond VM behavior. For example, subnets can enforce

performance requirements for bigger validator nodes that hold smart contracts for longer periods of time, or

validators that hold contract state privately.

4 Governance and The $AVAX Token

4.1 The $AVAX Native Token285

Monetary Policy The native token, $AVAX, is capped-supply, where the cap is set at 720, 000, 000 tokens,

with 360, 000, 000 tokens available on mainnet launch. However, unlike other capped-supply tokens which

bake the rate of minting perpetually, $AVAX is designed to react to changing economic conditions. In par-

ticular, the objective of $AVAX’s monetary policy is to balance the incentives of users to stake the token

versus using it to interact with the variety of services available on the platform. Participants in the platform290

collectively act as a decentralized reserve bank. The levers available on Avalanche are staking rewards, fees,

and airdrops, all of which are influenced by governable parameters. Staking rewards are set by on-chain gov-

ernance, and are ruled by a function designed to never surpass the capped supply. Staking can be induced

by increasing fees or increasing staking rewards. On the other hand, we can induce increased engagement

with the Avalanche platform services by lowering fees, and decreasing the staking reward.295
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Uses

Payments True decentralized peer-to-peer payments are largely an unrealized dream for the industry due to

the current lack of performance from incumbents. $AVAX is as powerful and easy to use as payments using

Visa, allowing thousands of transactions globally every second, in a fully trustless, decentralized manner.

Furthermore, for merchants worldwide, $AVAX provides a direct value proposition over Visa, namely lower300

fees.

Staking: Securing the System On the Avalanche platform, sybil control is achieved via staking. In order

to validate, a participant must lock up coins, or stake. Validators, sometimes referred to as stakers, are

compensated for their validation services based on staking amount and staking duration, amongst other

properties. The chosen compensation function should minimize variance, ensuring that large stakers do not305

disproportionately receive more compensation. Participants are also not subject to any “luck” factors, as in

PoW mining. Such a reward scheme also discourages the formation of mining or staking pools enabling truly

decentralized, trustless participation in the network.

Atomic swaps Besides providing the core security of the system, the $AVAX token serves as the universal unit

of exchange. From there, the Avalanche platform will be able to support trustless atomic swaps natively on310

the platform enabling native, truly decentralized exchanges of any type of asset directly on Avalanche.

4.2 Governance

Governance is critical to the development and adoption of any platform because – as with all other types

of systems – Avalanche will also face natural evolution and updates. $AVAX provides on-chain governance

for critical parameters of the network where participants are able to vote on changes to the network and315

settle network upgrade decisions democratically. This includes factors such as the minimum staking amount,

minting rate, as well as other economic parameters. This enables the platform to effectively perform dy-

namic parameter optimization through a crowd oracle. However, unlike some other governance platforms

out there, Avalanche does not allow unlimited changes to arbitrary aspects of the system. Instead, only a

pre-determined number of parameters can be modified via governance, rendering the system more predictable320

and increasing safety. Further, all governable parameters are subject to limits within specific time bounds,

introducing hysteresis, and ensuring that the system remains predictable over short time ranges.

A workable process for finding globally acceptable values for system parameters is critical for decentral-

ized systems without custodians. Avalanche can use its consensus mechanism to build a system that allows

anyone to propose special transactions that are, in essence, system-wide polls. Any participating node may325

issue such proposals.

Nominal reward rate is an important parameter that affects any currency, whether digital or fiat. Unfor-

tunately, cryptocurrencies that fix this parameter might face various issues, including deflation or inflation.

To that end, the nominal reward rate is subject to governance, within pre-established boundaries. This will

allow token holders to choose on whether $AVAX is eventually capped, uncapped, or even deflationary.330
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Transaction fees, denoted by the set F , are also subject to governance. F is effectively a tuple which de-

scribes the fees associated with the various instructions and transactions. Finally, staking times and amounts

are also governable. The list of these parameters is defined in Figure 1.

– ∆ : Staking amount, denominated in $AVAX. This value defines the minimal stake required to be placed as

bond before participating in the system.

– δmin : The minimal amount of time required for a node to stake into the system.

– δmax : The maximal amount of time a node can stake.

– ρ : (π∆, τδmin) → R : Reward rate function, also referred to as minting rate, determines the reward a

participant can claim as a function of their staking amount given some number of π publicly disclosed nodes

under its ownership, over a period of τ consecutive δmin timeframes, such that τδmin ≤ δmax.

– F : the fee structure, which is a set of governable fees parameters that specify costs to various transactions.

Fig. 1. Key non-consensus parameters used in Avalanche. All notation is redefined upon first use.

In line with the principle of predictability in a financial system, governance in $AVAX has hysteresis,

meaning that changes to parameters are highly dependent on their recent changes. There are two limits335

associated with each governable parameter: time and range. Once a parameter is changed using a governance

transaction, it becomes very difficult to change it again immediately and by a large amount. These difficulty

and value constraints relax as more time passes since the last change. Overall, this keeps the system from

changing drastically over a short period of time, allowing users to safely predict system parameters in the

short term, while having strong control and flexibility for the long term.340

5 Discussion

5.1 Optimizations

Pruning Many blockchain platforms, especially those implementing Nakamoto consensus such as Bitcoin,

suffer from perpetual state growth. This is because – by protocol – they have to store the entire history of

transactions. However, in order for a blockchain to grow sustainably, it must be able to prune old history.345

This is especially important for blockchains that support high performance, such as Avalanche.

Pruning is simple in the Snow* family. Unlike in Bitcoin (and similar protocols), where pruning is not

possible per the algorithmic requirements, in $AVAX nodes do not need to maintain parts of the DAG that

are deep and highly committed. These nodes do not need to prove any past history to new bootstrapping

nodes, and therefore simply have to store active state, i.e. the current balances, as well as uncommitted350

transactions.

Client Types Avalanche can support three different types of clients: archival, full, and light. Archival

nodes store the entire history of the $AVAX subnet, the staking subnet, and the smart contract subnet, all the
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way to genesis, meaning that these nodes serve as bootstrapping nodes for new incoming nodes. Additionally

these nodes may store the full history of other subnets for which they choose to be validators. Archival355

nodes are typically machines with high storage capabilities that are paid by other nodes when downloading

old state. Full nodes, on the other hand, participate in validation, but instead of storing all history, they

simply store the active state (e.g. current UTXO set). Finally, for those that simply need to interact securely

with the network using the most minimal amount of resources, Avalanche supports light clients which can

prove that some transaction has been committed without needing to download or synchronize history. Light360

clients engage in the repeated sampling phase of the protocol to ensure safe commitment and network wide

consensus. Therefore, light clients in Avalanche provide the same security guarantees as full nodes.

Sharding Sharding is the process of partitioning various system resources in order to increase performance

and reduce load. There are various types of sharding mechanisms. In network sharding, the set of participants

is divided into separate subnetworks as to reduce algorithmic load; in state sharding, participants agree on365

storing and maintaining only specific subparts of the entire global state; lastly, in transaction sharding,

participants agree to separate the processing of incoming transactions.

In Avalanche Borealis, the first form of sharding exists through the subnetworks functionality. For

example, one may launch a gold subnet and another real-estate subnet. These two subnets can exist entirely in

parallel. The subnets interact only when a user wishes to buy real-estate contracts using their gold holdings,370

at which point Avalanche will enable an atomic swap between the two subnets.

5.2 Concerns

Post Quantum Cryptography Post-quantum cryptography has recently gained widespread attention

due to the advances in the development of quantum computers and algorithms. The concern with quantum

computers is that they can break some of the currently deployed cryptographic protocols, specifically digital375

signatures. The Avalanche network model enables any number of VMs, so it supports a quantum-resistant

virtual machine with a suitable digital signature mechanism. We anticipate several types of digital signature

schemes to be deployed, including quantum resistant RLWE-based signatures. The consensus mechanism

does not assume any kind of heavy crypto for its core operation. Given this design, it is straightforward to

extend the system with a new virtual machine that provides quantum secure cryptographic primitives.380

Realistic Adversaries The Avalanche paper [6] provides very strong guarantees in the presence of a

powerful and hostile adversary, known as a round-adaptive adversary in the full point-to-point model. In

other terms, the adversary has full access to the state of every single correct node at all times, knows the

random choices of all correct nodes, as well as can update its own state at any time, before and after the

correct node has the chance to update its own state. Effectively, this adversary is all powerful, except for385

the ability to directly update the state of a correct node or modify the communication between correct

nodes. Nonetheless, in reality, such an adversary is purely theoretical since practical implementations of the

strongest possible adversary are limited at statistical approximations of the network state. Therefore, in

practice, we expect worst-case-scenario attacks to be difficult to deploy.
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Inclusion and Equality A common problem in permissionless currencies is that of the “rich getting390

richer”. This is a valid concern, since a PoS system that is improperly implemented may in fact allow

wealth generation to be disproportionately attributed to the already large holders of stake in the system. A

simple example is that of leader-based consensus protocols, wherein a subcommittee or a designated leader

collects all the rewards during its operation, and where the probability of being chosen to collect rewards is

proportional to the stake, accruing strong reward compounding effects. Further, in systems such as Bitcoin,395

there is a “big get bigger” phenomenon where the big miners enjoy a premium over smaller ones in terms

of fewer orphans and less lost work. In contrast, Avalanche employs an egalitarian distribution of minting:

every single participant in the staking protocol is rewarded equitably and proportionally based on stake.

By enabling very large numbers of people to participate first-hand in staking, Avalanche can accommodate

millions of people to participate equally in staking. The minimum amount required to participate in the400

protocol will be up for governance, but it will be initialized to a low value to encourage wide participation.

This also implies that delegation is not required to participate with a small allocation.

6 Conclusion

In this paper, we discussed the architecture of the Avalanche platform. Compared to other platforms today,

which either run classical-style consensus protocols and therefore are inherently non-scalable, or make usage of405

Nakamoto-style consensus that is inefficient and imposes high operating costs, the Avalanche is lightweight,

fast, scalable, secure, and efficient. The native token, which serves for securing the network and paying for

various infrastructural costs is simple and backwards compatible. $AVAX has capacity beyond other proposals

to achieve higher levels of decentralization, resist attacks, and scale to millions of nodes without any quorum

or committee election, and hence without imposing any limits to participation.410

Besides the consensus engine, Avalanche innovates up the stack, and introduces simple but important

ideas in transaction management, governance, and a slew of other components not available in other plat-

forms. Each participant in the protocol will have a voice in influencing how the protocol evolves at all times,

made possible by a powerful governance mechanism. Avalanche supports high customizability, allowing

nearly instant plug-and-play with existing blockchains.415
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