TipsyCoin Technical Whitepaper v1.0

Mittens Goldpepperr
mittens@tipsycoin.io goldpepperr@tipsgcoin.io
March 2022

Preface

This is a ‘preprint’ of the TipsyCoin technical whitepaper. If you wish to participate in an informal and decentralized
‘peer review’ process, please email us at the above email addresses with any thoughts, questions, or suggestions.

The purpose of this technical whitepaper is to discuss in a more nuanced way ‘tax on transactions’ based tokens that
rose to prominence particularly during the SafeMoon ‘craze’ of early 2021. TipsyCoin, too, draws much of its
tokenomic origins from SafeMoon mechanics, but has been redesigned in a number of ways that we believe make ita
step forward for ‘tax on transaction’ tokens. While we are building a revolutionary play-to-earn metaverse game,
TipsyVerse, we need to ensure that its primary governance token, or currency, is sustainable and eflicient in its own

right.

As always, you can view our website at: tipsycoin.io, our GitHub here: github.com/TipsyCoin, our CertiK audit here:
www.certik.com/projects/tipsycoin, and our audit write-up on our Medium page, here:

tipsycoin/tipsycoins-certik-audit-aSbfSafdcb8a.

Abstract

While ‘tax on transaction’ tokens such as the popular SafeMoon and its derivatives have been popular in the DeFi space,
and do contain genuinely novel ideas — the smart contracts running these tokens have design flaws that are rarely
explored from a technical perspective.

Users, generally unequipped to comprehend the nuanced criticisms of these tokens, often substitute the required
technical comprehension for ad-hoc justifications based on price movement — if the line goes up, the project must be
good. Compounding matters, the often unnecessary complexity of the SafeMoon contract makes it difficult to
understand and therefore iterate and improve.

In this technical whitepaper, we discuss some of the issues found in SafeMoon (and derivatives) in the context of their
smart contract code, the CertiK audit, and several million transactions worth of data collected on PancakeSwap (PCS).
With this, we propose TipsyCoin, a redesigned ‘step forward’ in tax on transaction tokens that doesn’t suffer from the
considerable issues found in SafeMoon. TipsyCoin is a simpler, more maintainable smart contract that provides greater
reliability in transactions.

mailto:mittens@tipsycoin.io
mailto:goldpepperr@tipsycoin.io
https://tipsycoin.io/
https://github.com/TipsyCoin/
http://www.certik.com/projects/tipsycoin
https://medium.com/@tipsycoin/tipsycoins-certik-audit-a5bf5afdcb8a

1. Introduction

The rise of DeFi in 2021 was meteoric. In December 2020, decentralized exchange (DEX) volume was just over 20
billion USD, yet by May 2021, it has rocketed up to over 140 billion USD on Ethereum mainnet alone ".

One of the most popular tokens during this DeFi hype sequence was Safemoon, which attracted over 800 million USD
in volume during the May 2021 period 2, In addition to its significant trading volume during 2021, it was also notable as
a token frequently discussed and endorsed on social media by a number of popular celebrities and online personalities,
including: Jake Paul, Nick Carter, Soulja Boy, and Lil Yachty. Details, examples, and allegations of these celebrity
endorsements can be found in the recent class action lawsuit against SafeMoon’, but examples include Jake Paul’s Tweet
(to his 4.2 million followers): “Everyone needs #SAFEMOON or this will be you.” *, followed by an image of a UFC
fighter appearing bloody and beaten, or Lil Yatchy’s Tweet (to his 5.4 million followers) of the #SAFEMOON hashtag
three times in a row °.

Whilst this paper could never hope to adjudicate the pending class action lawsuit against SafeMoon, it will attempt to
deliberate on some of the technical aspects that appear in the SafeMoon smart contracts, and hopefully portray our
discussion in a manner that is easy to understand.

So, to recap, in this paper we discuss the SafeMoon contracts, identify some perceived issues, and show how TipsyCoin
addresses these by simplifying the reflection and liquidity functions to make them more readable (maintainability) with
lower complexity (gas cost) and how it utilizes a network of smart contracts / gnosis vaults to hold LP and tokens not in
circulation, so they’re never in the hands of an Externally Owned Account (EOA), essentially decentralizing control.

We focused on these issues, specifically, because they were the target of comment and complaint by CertiK’s audit on
SafeMoon ¢, particularly the decentralisation aspect which could only be ‘Partially Resolved’ due to SafeMoon’s
contracts already being deployed and immutable.

1.1 TipsyCoin Background

TipsyCoin is a new GameFi project to be launched in 2022, containing a ‘tax on transfer’ primary token named
TipsyCoin to launch on March 15" on the Binance Smart Chain (BSC), an ERC721 NFT collection launching in
April on Ethereum Mainnet, and a Minecraft world & blockchain plugin with a dedicated in-game currency launching
shortly afterwards.

While this paper will specifically focus on the transaction taxed main token, TipsyCoin, more information on the other

aspects of the project may be found at our project website, https://tipsycoin.io.

A number of links to TipsyCoin articles, code, and more, have also been provided in the preface section at the

beginning of this paper.

! hetps://dune.xyz/queries/1847

* https://nomics.com/assets/safemoon-safemoon-v1-old/history

? https:/ /www.classaction.org/media/merewhuader-et-al-v-safemoon-llc-et-alpdf
* https://twitter.com/jakepaul/status/1375868696980123649

> heps://twitter.com/lilyachty/status/1377293537264418818

¢ https://www.certik.com/projects/safemoon

https://tispycoin.io/

1.2 SafeMoon Background

SafeMoon is a transaction tax token that was launched on the Binance Smart Chain (BSC) network on March 1* 20217,
BSC is an Ethereum Virtual Machine (EVM) compatible blockchain launched by the Binance group in April 2019 ®.
EVM compatibility means that BSC is compatible with, and runs on, the same smart contract code as on the Ethereum
network.

BSC has a number of minor differences when compared to mainnet, which are generally beyond the scope of this paper.
However, a couple of the key changes are the gas fees on BSC being deliberately minimized, with a minimum of 5 Gwei
per unit of gas and an average of 6.5 Gwei .

Gas cost is hugely reduced compared to Ethereum, which frequently averages over 100 Gwei " (a reminder that almost
all operations on the EVM, including mathematical operations and data storage incurs a gas cost as described in the
Ethereum yellow paper ', and that the final USD cost of a transaction on the network is defined as ETH_Price *
Gas_used * Gas_fee / 1e”18). The reduction in gas fee means that more complex code can be executed on the BSC
network at a far lower USD cost. While this occasionally results in severely degraded performance of the network during
heavy usage periods ', it does allow for tokens on the BSC network to perform potentially complex operations, even on
‘basic’ transactions such as transfers, without incurring prohibitive costs.

The popularity of low fee token creation and trading on BSC is also immediately evident in the number of token
contracts deployed to DEX’s, with BSC’s PancakeSwap V2 factory tracking 806,945 created coin pairs, compared to
one of Eth Mainnet’s premier DEX’s, Uniswap V2, tracking just 64,827.

@ Contract 0x5C69bEe701ef814a286a3EDD4B1652CBgccsanst @ 1 (Y 8 Coniract 0xeA1430e32Re78111701907d551a64021CS3 s @
Iniowep DeFi @ Factory Cant ’ g
Contract Overview Uniswap V2: Factory Contract [Contract Overview PancakeSwap: Factory v2
Balance: 0 Ether Balance: 0BNB
Valua $0.00 BNB Value $0.00
Token $52.75 @ v = Token: $45.10 v
Transactions Internal Txns BEP-20 Token Txns Contract ® Events Analytics
Transactions Internal Txns Erc20 Token Txns Contract @ Events Analytics
Code Write Contract

Code Write Contract

[3 Read Contract Information

B Read Contract Information

1.INIT CODE PAIR_HASH

1. allPairs
2. allPairs

2. allPairsLength

3. allPairsLength

64827 uint2ss 806965 vintzas

Figure 1. Left, UniSwap V2 factory 3 indicating 64,827 token pairs have been created, and right, the PancakeSwap V2
Jactory %, indicating 806,945 pairs bave been created.

7 https://bscscan.com/tx/0x08278405d40de452f8d2862a2937d9bcS4a43c26a3dF735d56de77b0aca609

¥ https://academy.binance.com/en/articles/an-introduction-to-binance-smart-chain-bsc

? https://academy.binance.com/en/articles/what-is-bscscan-and-how-to-use-it

' https://ycharts.com/indicators/ethereum_average_gas_price

" hteps://ethereum.github.io/yellowpaper/paper.pdf

" https://www.bsc.news/post/binance-smart-chain-experiences-congestion-from-heavy-demand,
https://thedefiant.io/binance-smart-chain-congestion-is-slowing-down-pancakeswap/, https://github.com/bnb-chain/bsc/issues/189
" https://etherscan.io/address/0x5c69bee701ef814a2b6a3edd4b1652cb9ccSaabt#read Contract

" https://bscscan.com/address/Oxcal43ce32fe78f1£7019d7dS51a6402fc5350c73#read Contract

We discuss SafeMoon specifically, due to its brief window of significant mainstream popularity (as discussed in Section
1.) providing a large amount of transactional data to analyze, as well as its novel mechanics of combining reflexive
rewards (user balance passively increases over time from the transaction tax) and auto-liquidity (designed to stabilize
token price). Although SafeMoon was not the first to combine token reflection and automatic liquidity, something
noted by the comments in the SafeMoon contract itself , it was the first to go ‘viral’, with search terms for SafeMoon
briefly outstripping even Google searches for Ethereum, as well as its enduring market cap of roughly one billion USD 1e
, as well as the vast number of SafeMoon ‘clones’ that were spun off from almost identical code.

GoogleTrends = Compare

Interest over time r o<

\ —~
18-24 Apr 2021

safemoon 64

ethereum 48 e A —

Average 3 Jan 2021 6 Jun 2021 7 Nov 2021

.
P

Figure 2. SafeMoon’s Google search volume score outdid that of Ethereum in April 2021. "

Similar Token Contracts

Likeness Name/Symbol Address Network Deployed Diff

1.00 TEST (TEST) Oxffaf...42c3 BSC +25d None
0.99 EvilElonMusk (EVILELON) 0x849e...9c3d BSC +57d View
0.99 MoonBonfire (MBONFIRE) 0xb9f6...2045 BSC +55d View
0.99 Silver (AG) 0xaf@9...blo6 BSC +37d View
0.99 t.me/SafePanantal (SAFEPAN) 0x85ff...b213 BSC +40d View
0.99 Safe5G (SAFESG) 0xb53d...3782 BSC +48d View
0.99 Al-Pacinu (ALPINU) Oxec70...53d7 BSC +142d View
0.99 SafeBullish (SBULLISH) 0x9a2l...6032 BSC +19d View
0.99 ApolloMision (APM) 0xd128...a7eb BSsC +57d View
0.98 Elonzila (EZA) 0xb40f...45e9 BSsC +58d View

WARNING: the above token(s) were flagged due to evidence of a bug, hack, or scam

Figure 3. Sample of contract addresses on BSC with at least 98% similarity to SafeMoon. Elon Musk, Dogs, and
interplanctary spaceflight are common themes ™.

" https://github.com/safemoonprotocol/Safemoon.sol

' https://www.cryptocompare.com/coins/safemoon/overview

' https://trends.google.com/trends/explore?date=2021-01-01%202022-03-158q=safemoon,ethereum

' https://tokensniffer.com/token/vlx8qkbqs33b31a0c48z1vm153mn5x0q5206zzxxdhS5f405aajvbv9228v20

2. Smart Contract Analysis of SafeMoon and its Derivatives

2.1 Gas Usage & Tax Mechanism

Despite SateMoon’s success, the underlying SafeMoon contract is a very clear merge of the two projects it was based on:
RFI (Reflect Finance) ” and, to our best knowledge, Heaven’s Gate *’ (although like much of the DeFI space, it’s quite
probable that these token contracts are themselves iterations of previous tokens).

The result of this merge is a token that very clearly feels stitched together, and isn’t, for example, compliant with the
ERC20 spec (e.g. missing events that are required, which we cover in more depth later). For instance, the reflective
portion in RFI’s code includes essentially no comments or documentation of functionality, which make the code and
what it’s doing essentially inscrutable. This frequently leads to opened issues on Github * and articles like this from
Medium entitled “What the hell is _rTotal and _tTotal” %

In terms of particular functions that are problematic in SafeMoon and SafeMoon derived tokens, one of the most
obvious lies in the transfer function:

1011 function _transfer(

1012 address from,

1013 address to,

1014 uint256 amount

1015) private {

1016 reguire(from != address(@), "ERC20: transfer from the zero address");
1017 require(to != address(®), "ERC20: transfer to the zero address");
1018 reguire(amount > @, "Transfer amount must be greater than zero");
1019 if(from != owner() & to != owner())

1028 require(amount <= _maxTxAmount, "Transfer amount exceeds the maxTxAmount.");
1021

1022 // 1s the token balance of this contract address over the min number of
1023 // tokens that we need to initiate a swap + liquidity lock?

1024 // also, don't get caught in a circular liquidity event.

1025 // also, don't swap & liquify if sender is uniswap pair.

1026 uint256 contractTokenBalance = balance0f(address(this));

1027

1028 if(contractTokenBalance >= _maxTxAmount)

1029 {

10308 contractTokenBalance = _maxTxAmount;

1031 3

1032

1033 bool overMinTokenBalance = contractTokenBalance >= numTokensSellToAddToLiquidity;
1034 if

1035 overMinTokenBalance &&

1036 linSwapAndLiquify &&

1037 from != uniswapV2Pair &&

1038 swapAndLiquifyEnabled

1039) {

1040 contractTokenBalance = numTokensSellToAddToLiquidity;

1041 //add liquidity

1042 swapAndLiquify(contractTokenBalance);

1043 3

Figure 4. Private _transfer function from SafeMoon code 2 lines 1011 to 1043.

' hetps://github.com/reflectfinance/reflect-contracts/blob/main/contracts/REFLECT.sol
* hetps://etherscan.io/address/0x054bd236b42385c938357112f419dc5943687886#code
*! hetps://github.com/safemoonprotocol/Safemoon.sol/issues/S0

* https://wd666.medium.com/what-the-hell-is-rtotal-and-ttotal-4e2ec90466£7

* htetps://github.com/safemoonprotocol/Safemoon.sol/blob/main/Safemoon.sol#L1011

In this example, we can see that during the transfer function, SafeMoon checks the SafeMoon token balance held within
the SafeMoon contract itself. If this balance is above the limit (set in numTokensSellToAdd ToLiquidity), the contract
will attempt to sell half that number of tokens to PCS, and add the resulting BNB + SafeMoon as liquidity, for the
stated reason to “decrease volatility” ** by increasing the available liquidity.

While this check before adding liquidity prevents the overhead of these functions being called on every transaction,
saving very approximately 250,000 gas for the adding of liquidity, and 150,000 gas for the extra swap required (very
approx. ~$0.80 assuming 5 Gwei and $400 per BNB), it makes it much more difficult for crypto wallets like MetaMask
or Trust Wallet to estimate the amount of gas required for the transaction to execute.

All transactions on the Ethereum (and BSC) chains require a gas ‘limit’ >, which is the maximum amount of gas a
transaction can use before it will revert and fail. Wallets like MetaMask or Trust Wallet typically estimate the gas
required for a transaction using the "eth_estimateGas” function of the JSON-RPC (remote procedure call) protocol *.
This function essentially ‘steps through’ a proposed transaction to see how much gas it will use, and provides that
estimate to the user when they submit their transaction.

So, when the swapAndLiquify is not expected to run, the estimated gas fees will be significantly lower compared to
when it zs expected to run. In reality, however, there is a time lag between the time the user client estimates the gas used,
and the time the transaction is actually ready for execution on the blockchain. During this time lag, queued transactions
from other users trading SafeMoon ahead of the said user might be processed and executed. If the tax accumulated from
these transactions were enough to trigger the swapAndLiquify function, the actual gas usage for the other user’s
transaction will jump significantly. Having wrongly estimated the gas fee at the time of approval, it is likely that the said
transaction will run out of gas and fail, which causes the next transaction in the queue to trigger the function, and
potentially also run out of gas and fail. This difficulty in estimating gas usage is likely to be a major cause of transaction
failures when trading SafeMoon or derivatives on PCS, which makes for a poor user experience, and is something we’ll
be exploring shortly with an experiment.

In addition to having uncertain gas usage, SafeMoon’s attempt to use liquidity to buffer the price also has a number of
issues. Primarily, the tax for SafeMoon is collected in native tokens, half of which must then be so/d when adding
liquidity. The amount that triggers swapAndLiquify is static, too, which meant that during May 2021 using Nomics’
token data, which put SafeMoon at an average price of $6.57 per million tokens *, a swapAndLiquify would sell off
$1.65 million worth USD during a swapAndLiquify, potentially severely impacting the price.

TipsyCoin addresses a number of these issues. First, the amount of gas used is much easier to estimate, reducing the
number of failed transactions — this is because TipsyCoin a/ways taxes sell transactions by taking up to 10% of the
$tipsy that would be sold, redirecting it to the TipsyCoin contract address, and then swapping it for BNB. For very
small $tipsy amounts (defined as transactions where the taxable portion to be traded for BNB would be less than 1
Gwei), the amount that would be taxed is instead burned. This means that the only transactions where gas usage cannot
be easily estimated are those in the range of 15-20 Gwei, or transactions worth a fraction of a cent.

* https://safemoon.com/whitepaper.pdf

* https://ethereum.org/en/developers/docs/transactions/

* https://eth.wiki/json-rpc/API

7 https://nomics.com/assets/safemoon-safemoon-v1-old/history

o
-1

function transferFrom
address sender,

o
]

489 address recipient,

490 uint256 amount

491) public noBots(recipient) returns (bool) {

492 if ('!excludedFromFee[sender])

493 {

494 uint _amountBuyBack = amount * buybackFundAmount / _feeTotal/1e®;

495 uint _amountMarketing = amount * marketingCommunityaAmount / _feeTotal/1@

496 uint _amountReflexive = amount * reflexiveAmount / _feeTotal/1@;

497

498 if(_amountBuyBack + _amountMarketing = @)

499 {

508 uint _minToLiquify = pancakeV2Router.getAmountsOut(_amountBuyBack + _amountMarketing, _tokenWETHPath)[1];
501 if(_minToLiquify >= 1le9) _taxTransaction(sender, _amountBuyBack + _amountMarketing, _minToLiquify);
502 else burn(sender, _amountBuyBack + _amountMarketing);

503 }

504

505 amount = amount - _amountBuyBack - _amountMarketing - _amountReflexive;

506 transfer(sender, recipient, amount);

507

508 if(_amountReflexive > 0) reflect(sender, _amountReflexive);

509

5160 }

511 else

512 {

513 //Skip collecting fee if sender (person's tokens getting pulled) is excludedFromFee
514 transfer(sender, recipient, amount);

515 }

Figure . Section of TipsyCoin’s main ERC20 contract showing much more stable gas usage by taxing all sell transactions %

While readers might assume that always taxing sells causes TipsyCoin to be more gas intensive than SafeMoon —
because of a number of other gas saving techniques used in TipsyCoin, as well as the existence of gas inefficiencies in
SafeMoon, the average gas required for a $tipsy sell is still significantly lower than a SafeMoon transaction. Additionally,
TipsyCoin only taxes when you sell, making simple transfers or buy transactions (all of which are taxed by SafeMoon
and derivatives) no more expensive than standard non-transfer tax tokens, like USDC.

TipsyCoin also never tanks the price of its token when collecting tax. By only taxing sells, $tipsy is only swapped for
BNB at a time when the user was already in the process of selling their tokens. So, as an example, if a user intended to
sell 100 $tipsy for 1 BNB, the user would effectively still transfer out 100 $tipsy, but with 10% of that output either
being swapped for BNB and redirected to the tax collection addresses, like the BuyBack vault, or used for reflexive
rewards. Once a significant amount of BNB has been accumulated in the BuyBack vault, the vault is then triggered by
the team, and causes a net buy of tipsy. This system ensures that unlike SafeMoon and derivatives, the tax never dumps
$tipsy on the open market. Figure 6 from the tipsycoin.io website visually explains this process.

* https://github.com/TipsyCoin/ TipsyCoin/blob/main/contracts/ TipsyCoin.sol#L487

https://tipsycoin.io/

$tipsy Holders Liquidity Pool

2. tipsyVault
strategically uses the

BNB to buyback $tipsy

1. Sales of $tipsy send
4% of tax proceeds in
BNB to tipsyVault

tipsyVault

3. The $tipsy is then
burned, permanently
reducing the max supply

Burn

TIPSY

29

Figure 6. Infographic showing how the TipsyCoin Buyback vault (tispyVault) works
TipsyCoin, the vault is also configurable to add liguidity or distribute reflexive rewards 30

In additional to burning

As a final comment on the add liquidity function in SafeMoon, a significant downside of adding the liquidity all at once
in the manner they did, is that the potential price impact of the sell causes slippage when liquidity is added. This is
generally unavoidable, and slippage is typically small, but the large size of the SafeMoon buybacks and the significant
volume it attracted means that there’s currently over $2 million USD worth of BNB permanently stuck in the contract
3. This is another issue TipsyCoin fixes, since it allows leftover BNB to be reused during the buyback process, and other
‘stuck’ assets can also be salvaged from the contracts.

In summary, in this section we’ve hopefully explained why the unpredictable gas usage of SafeMoon and SafeMoon
derivate tokens makes transactions more likely to fail. Additionally, because the tax is collected in native tokens, when
the add liquidity function is eventually called, it causes a potential price drop. This price slippage combined with no
salvage functions has also resulted in several million dollars being trapped in the SafeMoon contract. TipsyCoin
addresses these concerns by collecting tax on every sell transaction, reducing failed transactions, as well as collecting tax
proceeds in BNB. TipsyCoin also allows unspent BNB in the buyback vault to be reused, and other assets can also be
salvaged if they get stuck in the TipsyCoin contracts.

* https://tipsycoin.io/tokenomics/
** hetps://github.com/TipsyCoin/ TipsyCoin/blob/main/contracts/BuyBack.sol#L868
*' hetps://bscscan.com/address/0x8076c74cSe3£585203731f£0093eeb8c8add8d3

2.2 Reflection

Out of all the aspects of SafeMoon, its reflection code is perhaps its most novel, but also its most complex. Reflection is
a way for token holders to see their balance accumulate over time purely via the reflection mechanism. Reflection is also
a ‘passive’ reward system where, unlike staking or farming, no extra transactions need to be sent and instead, the user’s
balance increases by holding onto the token. In addition to requiring extra transactions, traditional forms of
rewards-earning, such as staking and yield farming come with several costs and risks, such as: pooling funds in
potentially unverified / untrusted contracts, fees to accept rewards, and security risks with transferring funds.

While TipsyCoin implements reflection in its contract code, the concept of reflection has been used frequently in the
DeFi world before as well. Projects such as EverGrow Coin have paid over $35 million in reflection to reward its token
holders, but perhaps the most notable example of reflection is the one implemented by SafeMoon-to which we will
compare TipsyCoin’s implementation.

2.2.1 Reflection in TipsyCoin

Similar to SafeMoon, TipsyCoin’s reflexive rewards are funded by a tax on TipsyCoin transactions. However, as
mentioned previously in the paper, unlike SafeMoon, TipsyCoin only taxes sell transactions, whereas SafeMoon taxes
all coin transactions. From the 10% sell tax that is implemented in TipsyCoin, 40% of the sell tax (4% of each sale), goes
towards reflection. If a token holder were to hold 0.0002% of the total supply of TipsyCoin, they would then be
rewarded with 0.00002% of the 4% with reflexive awards.

Over time the burn wallet turns into the largest holder, and its earning of reflection awards as well, further decreases the
total supply in circulation and thus adds to the coin’s deflation.

2.2.2 Reflection Implementation

The naive idea to implement reflection would be to simply loop through the account holders and deposit an additional
number of tokens. However, this approach would be very costly in terms of gas, and instead TipsyCoin uses a
deflationary ratio that increases the value of a user’s balance instead of manually adding more tokens.

The idea behind using a ratio to manage user balances, is similar to the idea of the deposit reserve ratio, where the total
currency in circulation can be derived from the balance sheets of a bank. Similar to SafeMoon’s implementation,
TipsyCoin uses the idea of mapping tokens in the real supply to tokens in the reflexive space, _r7Toztal. The essential idea
behind the mapping from real space to reflective space, is that a holder’s balance can accurately represent its share of the
total supply, through the ratio of »7ozal. Initially, when there have been no sales, »7otal is mapped 1-1 to the total real
supply of the coins. After each sale, the »7ota/ multiplier is modified to represent the increase value of each coin with
the following formula:

totalSupply,eqr % Trotaio
totalSupply e

TTotal = — reflectAmount

After calculating the »7ozal, which represents the relationship between the real space, and the reflective space, we can
effectively calculate the reflective balance a token holder will see with the following relationship:

(balancereal X rryeq;)
18

userBalance =
e

As more sales take place, the value of 770zal increases, which increases a holder’s balance and represents their increasing
share of the total supply. Let’s illustrate this with an example, and for the purpose of simplicity assume the total supply
of TipsyCoin was 100 tokens with all other factors kept the same. Consider the case of the first transaction from
Pingu, who owns 10 coins. Another holder, Pengu has 1 coin. Pingu decides to sell all his tokens, and with 4% towards
reflexive tokens that means 4 tokens must be distributed. If we use the »7otal formula from above, we find that the
r1otal is now 1.04, signifying the increase in token holder’s reflexive balances. If we apply this to Pengu’s balance,
Pengu now has 1.04 tokens, which is the same number Pengu would’ve had if we had simply divided 4 by 100, and
distributed 0.04 to each token.

The reason this relationship works is that TipsyCoin carefully keeps track of the real supply of the token and the
reflexive supply of the token. After each reflection, the total real supply is decreased by the reflected amount, however
_rTotalSupply always remains constant, by increasing the _r7otal. Therefore, through each sale of the token, the
balance of a token holder is increased to represent the increase of the market share they now have.

SafeMoon implements reflection with a very similar concept of managing a relationship between real tokens and
reflexive tokens, but TipsyCoin takes this idea further in several ways. Firstly, as shown in the diagram below, SafeMoon
uses several variables, additional storage and convoluted functions to maintain the relationship between »7otal, and the
total supply which they named #70za/. The management of so many moving parts, makes the SafeMoon code difficult
to process and understand which can lead to harder code maintenance and more.

77

1
i] i
1 Txn1 i | Txn2 !
: : I 1
i i I I
U | tFess, Liguidiy ! | |
i i

i H 1 !
i

t space i i ! |
i | ! :
| : I i
" | I i
' rate 1 1 i
] i) 1
H i 1 |
] | I]
! changes in ¥ | !

r space i + # (otal and] I i
1 rTotal i ! 1
! rAmOuUnt ' i :
- Fees ! I
1 i 1
1 rLiquidity 1 } :
I 1
1 changes in | | :
1 ! i i
I . !

Figure 7. SafeMoon’s implementation of reflection with multiple moving parts, leading to harder code maintenance 32

TipsyCoin simply uses 2 variables: »7otal and rotalSupply to manage reflection, derived from the idea of the
deposit-reserve ratio. Through reflection, we believe in rewarding our token holders for their loyalty, and we do so in
clever ways.

* https://wd666.medium.com/what-the-hell-is-rtotal-and-ttotal-4e2ec90466f7

10

2.3 Centralization Concerns
The final way we can highlight some of the technical shortcomings of SafeMoon is to discuss their audit by CertiK. The

audit report indicated a number of issues discovered, many of which were not able to be addressed by the SafeMoon
team, because the contract was already deployed and could no longer be altered.

Table 1. SafeMoon’s CertiK Vulnerability Summary
Vulnerability Summary

Vulnerability Level Total (D Pending () Declined () Acknowledged (& Partially Resolved (&) Resolved

@ Critical 0 0 0 0 0 0
Major 1 0 0 0 1 0
Medium 1 0 0 1 0 0
Minor 4 0 0 3 1 o]

@ Informationa & 0 0 6 0 o]

@ Discussion 1 1 0 0 0 0

SafeMoon’s summary of vulnerabilities - produced by CertiK for the SafeMoon audit” indicating that a number of issues
remazined unresolved or unmitigated.

The ‘Major’ issue at hand, is that whilst the initial liquidity of SafeMoon was locked, all of the LP tokens minted using
the SafeMoon tax were sent to a single developer address. After a prolonged period, with a significant amount of tax
revenue collected from the token, this provides the developers with a huge number of LP tokens (which themselves
represent equal parts SafeMoon and BNB). If misused, this could result in the developers withdrawing the underlying
tokens in the LP and ‘rug pulling’ them.

[SafeMoon Team]: In regards to owner control, we are a fair launch governed by a central board which is
subject to governmental regulations and law. We are a legally registered entity in accordance to the law
and jurisdictions in which we operate. SafeMoon is very different from other projects, and our differences
provide more security for the community vs. anonymous teams and projects. Risks in regard to “rug-pulls”
or anything else is mitigated due to the fact that every member of SafeMoon would be subject to litigation
and likely a swift prison sentence. Additionally, outside of the law, our social lives would be in ruin, and we

would not be able to show our faces in public again, let alone get ancther job. This should be taken into

account when looking at the SafeMoon project as a whole.

Figure 8. SafeMoon’s response to SSL-04 | Centralized risk in addLiquidity in the CertiK SafeMoon audit. CertiK
considered the issue ‘partially mitigated’.

% hetps://www.certik.com/projects/safemoon

11

SafeMoon claimed that they would be effectively required to carefully manage this risk, because any deviation from the
path would result in swift legal action. This is rather undercut by the pending class action litigation against SafeMoon,
which alleges that these assets were noz as carefully managed as SafeMoon had assured, and that the SafeMoon team
engaged in a ‘slow rug’ operation of gradually selling off their token holdings over a period of time *.

TipsyCoin fixes this major centralization problem. TipsyCoin was also audited by CertiK 3 In the report, all issues
classified as Minor and above were either resolved or mitigated. With security as our focus, TipsyCoin engaged in a
month-long audit process with CertiK before launching, so that any issues identified could be discussed and addressed
in plenty of time.
Table 2. TipsyCoin’s CertiK Vulnerability Summary

Vulnerability Summary

Vulnerability Level Total pPending Declined Acknowledged Partially Resolved Mitigated Resolved

@ Critica 0 0 0 0 0 0 0

b Major 4 0 0 0 0 2 2
Mediur 3 0 0 0 0 0 3
Minor 1 0 0 0 0 0 1

& Informational 5 0 0] 1 0 0

@ Discussiorn n & 0 0 0 0 0

TipsyCoin’s summary of vulnerabilities, produced by CertiK for the TipsyCoin audit * indicating that all issues Minor or
above were marked as ‘Resolved’ or ‘Mitigated’.

Some readers may be concerned that the summary of the TipsyCoin CertiK audit doesn’t list all issues as being
‘Resolved’, with some instead listed as ‘Mitigated’. Rest assured that ‘Mitigated’ does not mean #nsafe. As we have
discussed in depth in our audit write-up on Medium?, the mitigated issues relate to ‘privileged’ access risk by owner or
administrator accounts. Instead of running on promises that these accounts won’t be misused, the Tipsy team has taken
it a step further by working with CertiK to implement both multi-sigs using Gnosis-Safe, and governance TimeLocks to
manage privileged access.

This means that sensitive functions and assets are never held by a single wallet address, and are instead held in a network
of decentralised smart contracts, with multi-sigs to ensure a compromised key or account doesn’t lead to the loss of user
funds, with 48 hour timelocks to ensure a sufficient ‘notice period’ before any changes are made, allowing users to exit
the ecosystem if they are unhappy or unsure of the impact the pending changes will bring.

Also, in our aforementioned Medium article, we have a detailed justification for why we require any level of privileged
access, but the concise version is that the TipsyVerse ecosystem is rapidly expanding, and so we require some

** hetps://www.classaction.org/media/merewhuader-et-al-v-safemoon-llc-et-al.pdf
* hetps://www.certik.com/projects/tipsycoin

* hetps:/ /www.certik.com/projects/tipsycoin

37 https://medium.com/@tipsycoin/tipsycoins-certik-audit-aSbf5afdcb8a

12

administrative access to the contracts to maintain compatibility with future projects like staking and the upcoming
blockchain integrated game, TipsyVerse.

TipsyCoin (Post Audit) Deployment Diagram

Gnosis Safe multi-sig

Gnosis Safe multi-sig

EOA's

Execute after delay

Sign 3of5

20f3

.V

For Proxy upgrades (v. spooky} For standard privileged actions EOAs
Propose Tx Propose Tx
Governance (1) Governance (2) Execute after delay
48 Hour Lock 48 Hour Lock
Owner (ALL CONTRACTS) TipsyCoin ERC20

Token Holder x5 (Marketing etc)

Transfer BNB

Transfer Token

Proxy Admin (ALL PROXIES)

g:' Change Owner
[Update Description
Proxy Admin Proxy upgrade
P

Proxy change Admin

40% Minted at Genesis

Owner <—‘

10% Vested at Genesis

Proxy Admin €—————

Proxy

Token Vesting (for Dev fund)

Proxy

Adjust Tax Weights

Launch (Add Tipsy/BNB LP and Lock)

Manage token LP
Change Owner
Edit Whitelist (Contracts & No Tax)

Base ERC20 (Transfer, Approve, etc)

Proxy upgrade

Proxy change Admin

Send after lock expires
1

BuyBack

Do Buyback
Change Owner

Proxy

Adjust Weights (Burn, Reflect, Liquidity)

Proxy upgrade

Proxy change Admin

Burn / Reflect

o

Proxy Admin

New LP Locked

LP (inc. 50% of Tipsy)
Locked at Launch

Token Timelock

Start Vesting (12 months)
Release Vested Tokens

Change Owner

Token Distribution

Tokens Released, >

Distribute Tokens

Change Owner

Proxy upgrade

Proxy change Admin

Proxy

Proxy Admin <———————|

Proxy upgrade

Proxy change Admin

Tokens
Distributed

Owner

Qwner

5 Year Lock

Deployed By TipsyCoin

Devs

Figure 9. TipsyCoin (Post Audit) Deployment Diagram. A diagram demonstrating the network of smart contracts used to
manage assets and access for TipsyCoin, ensuring a single user never has privileged access. Sourced from the TipsyCoin

Github readme.md file ™.

In summary of the centralisation issue — SafeMoon’s audit by CertiK revealed a number of issues, many of which could

not be fixed.

3. Experiments

In addition to just looking at the code and design of SafeMoon and derived tokens, no research paper would be
complete without at least some experiments being undertaken. In this section, then, we collected a large number of
SafeMoon transactions that occurred on the BSC, and combined our analysis from the previous sections with some
more quantitative data to demonstrate how TipsyCoin takes incremental steps forward in tax on transaction

tokenomics.

3 bttps://github.com/TipsyCoin/TipsyCoin/blob/main/README.md

13

3.1 Methodology

Data was collected between between blocks 5500000 and 8000000 (Between March 8%, 2021 *” and June 8" 2021 %)
on the Binance Smart Chain. We collected this data using BSC’s version of Geth # which is the command line interface
for running a BSC node. This range includes the beginning of the SafeMoon contracts through its most active period of
activity in early-mid 2021, as determined via Nomics” historical token data for SafeMoon price and volume *.

The data tracked was PancakeSwap trading data between these block ranges — transfers of the token between wallets
were not tracked. All transactions not ‘to’ the PancakeSwap router v1 or v2 (SafeMoon migrated from PancakeSwap
router v1 to v2 in December 2021) were discarded, as were all transactions with function selectors ** that didn’t match a
PCS buy or sell operation (for example, SwapEthForTokens).

To determine whether SafeMoon was being traded on PancakeSwap, and should therefore be included in the analysis,
we checked the ‘path’ array present in all PCS buy and sell functions that determines what assets were to be swapped. If
the SafeMoon token was either at the start or end of this list, indicating that it was being bought or sold, it was added to
a database of transactions to use in our analysis.

All transactions added to the database also had the following recorded: sender, blockNumber, gas used, volume of
SafeMoon traded, and whether the transaction succeeded. This data formed the basis of our analysis, and included
several million transactions, over a billion dollars of SafeMoon volume (at current market price) and more than 1TB
worth of trading data.

3.2 Transaction Failure Rate Experiment

One of the metrics we wanted to investigate was the number of failed transactions when buying and selling SafeMoon.
One of the key design decisions in TipsyCoin was the removal of a tax for buying our token, instead of only taxing sells.
It is therefore important to attach some quantitative data to measure the impact of what this might have.

For this experiment, we used the dataset as described in the methodology above, and filtered it by the number of total
failed transactions to get a background of what the failure rate was for trading SafeMoon. Whilst TipsyCoin has not yet
launched, and so data cannot yet be directly compared, examining a small subset of USDT trading data from
PancakeSwap (PCS) suggested that the UI elements in PCS, which prevent common user input errors, are able to keep
failed transactions for standard coins to 1-2% on average.

3.3 Results & Discussion of Transaction Failure Rate Experiment

Table 3. SafeMoon’s Block Ranges and their Failed Transaction Ratios

Block Range Failed Transaction Ratio
5500000-6000000 3.189%

6000000-6500000 2.518%

6500000-7000000 6.924%

7000000-7500000 10.354%
7500000-8000000 4.0556%

All recorded 9.500%

* hetps://bscscan.com/block/$500000

“* hetps://bscscan.com/block/8000000

“ heeps:// github.com/bnb-chain/bsc/releases

“ https://nomics.com/assets/safemoon-safemoon-v1-old/history

* hetps://docs.soliditylang.org/en/v0.8.12/abi-spec.html?highlight=function%20selector

14

Our analysis of 5317904 transactions on PCS between blocks 5500000 and 8000000 (between Mar-08-2021 11:53:29
AM +UTC * and Jun-04-2021 09:56:05 AM +UTC *) indicated that 4856750 transactions succeeded, whilst 461154
failed — this represents a failure rate of 9.50% of all transactions.

Interestingly, this failure rate was not even across the data blocks we collected. For example, between blocks 6000000
(Mar-25-2021) * and 6500000 (Apr-12-2021) * we observed a failure rate of 2.52%, yet between blocks 7000000
(Apr-29-2021) ** and 7500000 (May-17-2021) **, we observed a significantly increased failure rate of 10.35%.

Our results suggest an interesting trend for failing transactions, with the initial rate being low, and then quickly
escalating into the double digits. We have a few possible explanations for this trend. It’s perhaps likely that early
adopters of SafeMoon were DeFi natives, and so were more likely to know how to set correct slippage and gas limits.
Then, during the ‘peak hype’ surrounding SafeMoon, users were less DeFi savvy, and so did not know those options
were set.

It’s also possible that the way users interacted with SafeMoon changed during that time period. For example, early
adopters may also have interacted more via MetaMask on a PC interface (which is quite configurable), while less
experienced users may have relied on apps and internet guides, which would again, have a reduced chance of success. In
addition to the actual failure rate of 9.50%, PCS’s interface is also likely to have prevented a large number of “‘would have
failed’ transactions as it performs some profiling of the transaction to determine whether it is likely to succeed.

Slippage Tolerance @

| |
Figure 10. PCS slippage tolerance default options. Available by clicking on the ‘gear’icon on the PCS swap’ page 0

Because of SafeMoon’s 10% tax, PCS will prevent you from sending a transaction if this setting is less than 10%.
Therefore, the actual number of failed transactions recorded on the blockchain is likely to be a vast understatement
when compared to the number of transactions that were attempted but rejected by PCS’s interface.

Although these ‘potential transactions’ are not recorded on the blockchain, and so exact numbers are likely to be
impossible to determine, the large number of search results on Google, Reddit and other social media sites for the
specific PCS error messages seems to suggest it was widespread. PCS also created several troubleshooting articles in an
attempt to resolve INSUFFICENT_OUTPUT_AMOUNT’ style errors *', with a specific guide for setting slippage to
accommodate SafeMoon and similar tokens in their docs **.

“ https://bscscan.com/block/5500000

 hetps://bscscan.com/block/8000000

“ hetps://bscscan.com/block/6000000

“ https://bscscan.com/block/6500000

“ hetps://bscscan.com/block/7000000

“ hetps://bscscan.com/block/7500000

* heeps://pancakeswap.finance/swap

*' https://docs.pancakeswap.finance/help/troubleshooting#insufficient_output_amount

%2 https://docs.pancakeswap.finance/help/troubleshooting#issues-buying-safemoon-and-similar-tokens

15

Trade tokens in an instant

X
Error Notice for trading SafeMoon
To trade SAFEMOON, you must click
on the settings icon and set your
‘ slippage tolerance to 12%+
The transaction cannot succeed This is because SafeMoon taxes a
due to error: PancakeRouter: 10% fee on each transaction.

INSUFFICIENT_OUTPUT_AMOUNT.

Th 1L i ith
> prabablyap iade With I « 5% fee = redistributed to all existing
one of the tokens you are

5 holders
swapping T
| * 5% fee = used to add liquidity
- O understand (
A A |
L) § y

Figure 11. PCS UI demonstrating: a trade cannot occur due to an error > (Left) , a customised error specifically when
attempting to trade SafeMoon ** (Right).

Also, to further illustrate our previous point in section 2.1, about the gas price of SafeMoon leading to failed
transactions, as well as the general gas inefficiencies of SafeMoon, we plotted the average gas used by the token, and
compared it to a small sample of testnet TipsyCoin transactions.

Gas usage by Safemoon

Gas usage by Safemoon

1400000
1400000

1200000
1200000

1000000 1000000
5 5
; £
3 gl
v 92 -
% S00000 5 800000
H 2
o 2
s ©
3 - 2
a 600000 1 o 600000
3 Y]
400000 400000
200000 200000
-—- $tipsy sell --- $tipsy sell
-—- $tipsy buy --- $tipsy buy
T -—- $tipsy sell T --- $tipsy sell
=== $tipsy buy --- $tipsy buy
o 0
° - °
Transaction status Transaction status

Figure 12. Average gas usage during SafeMoon transactions. Left: average gas usage from blocks 7500000 to 8000000.
Right: average gas usage from blocks 8000000 to 8500000. Blue bars represent successful transactions, whilst Orange bars
represent failed transactions. Dotted Red and Blue lines represent TipsyCoin transactions based on testnet data.

>3 https://coinguides.org/wp-content/uploads/2021/04/pancakeswap-transaction-error.jpg
** https://community.trustwallet.com/uploads/default/original/3X/b/0/b02cc31cal Oe3efaacd77c762£5c7c1e7b7a160d. jpeg

16

As can be seen by Figure 14, TipsyCoin uses significantly less gas. Interestingly, the amount of gas used by SafeMoon
increases over time, and the cost of failed transactions is higher as compared to the average successful transactions. This
potentially indicates that the frequency of the addLiguidity function is increasing, and also reinforces our thoughts that
failed transactions are likely because of the difficulty in estimating gas usage in SafeMoon.

3.4 Excluded Users Experiment

In this experiment, we sought to quantify how many users ‘gave up’ on purchasing SafeMoon. The data was prepared
with the same methodology as described in section 3.1, except this time we filtered the dataset by unique addresses who
transacted, as well as unique addresses who transacted only once, and whose sole transaction failed.

3.5 Excluded Users Results & Discussion

Table 4. Users with Failed Transactions who did not Reattempt

Block Range Addresses with failed txs who did Addresses with failed txs who did
not reattempt (% fails) not reattempt (% all)

5500000-6000000 * *

6000000-6500000 5.495% 0.238%

6500000-7000000 4.159% 0.460%

7000000-7500000 17.406% 2.356%

7500000-8000000 16.667% 0.904%

*Due to a data collection issue, data from the 5500000-6000000 range was not available for this experiment.

Our results here are similar to those discovered in section 3.3, in that the number of users who had failed transactions
drifted during the course of data collection. Of particular note, during the 7000000-7500000 block range, representing
a date range of between Apr-29-2021 *° and May-17-2021 *¢, the number of users who received a failed transaction and
never reattempted was over 2%.

% https://bscscan.com/block/7000000
> https://bscscan.com/block/7500000

17

Conclusion

In this paper we sought to explore some of the history, design features, and design issues of ‘tax on transfer’ tokens such
as SafeMoon and its derivatives. To assist with our analysis, we examined the SafeMoon Github code, the CertiK audit
of SafeMoon, the CertiK audit of our project, as well as collected millions of PCS transactions involving SafeMoon and
conducted an experiment using this collected data, including average gas used, transaction success ratio, and whether
users re-attempted their transactions on failure.

Our conclusion of SafeMoon and derivatives is that the contract code employed in such projects are unnecessarily
complex and gas inefficient. Besides being inefficient, the addLiguidity code is only triggered on a subset of
transactions, making required gas cost estimates difficult and unreliable, which leads to failed transactions and users
potentially giving up on transacting the token.

We measured an average transaction failure rate of SafeMoon at 9.500%, with the gas usage increasing over time, but
averaging well over 800,000 by block 7500000. We also discussed numerous CertiK audit concerns about the SafeMoon
project that couldn’t be resolved because of SafeMoon’s decision to launch first and audit second. To resolve these
issues, we proposed TipsyCoin, a step forward in tax on transfer tokens.

TipsyCoin is a token that is less technically complex (reduces gas fees and gas usage uncertainty); only taxes sell
transactions (reduce friction in purchases, and prevent users giving up before); a BuyBack vault in BNB instead of
native token (prevent price dumps when adding liquidity); improved decentralization (all LP locked for 5 years, a
network of auxiliary contracts, timelocks and multi-sigs to manage privileged access); and was audited by CertiK before
launch, allowing us to resolve or mitigate all issues tagged as ‘Minor’ or above.

TipsyCoin is the foundation that the GameFi infrastructure of TipsyVerse will be built on. The efficient reflection
mechanism and key security features thus allows TipsyCoin to perform its core duties as a deflationary governance
token for the game that rewards holders in the process. At this time of writing, no billion-dollar metaverse has a primary
governance token that is deflationary, and so TipsyCoin resolves the issue of a crumbling economic system most
play-to-earn metaverse games are faced with. In addition, TipsyCoin also has immense utility, including its users being

able to pay for NFTs in $tipsy.

Limitations

Finally, there are some limitations of this paper. Primarily, SafeMoon was migrated to a completely new ‘v2’ beginning
2021-12-31 . Their new token contract was not included in our analysis and discussion, because at the time of writing,
insufficient trading data was available to draw any conclusions of failure rate and gas performance. Additionally, at the
time of writing, their V2 project has not been audited, making comparisons between the V1, V2, and TipsyCoin smart
contracts and their audit results impossible.

5 https://www.bsc.news/post/safemoon-shows-how-to-migrate-tokens-from-v1-to-v2

18

