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Abstract 

 

We propose APIS, a middleware protocol for the functioning of a decentralized read-

write protocol, allowing for the mainstream growth of a fully decentralized finance and 

decentralized web architecture. Current data index and querying solutions are either 

centrally architected, reliant on a party who at all times is subject to numerous performance 

and regulatory risks, or logically decentralized, thus requiring an in-depth knowledge of the 

public blockchain protocol layer and obscuring the majority of global developers from 

interacting with public blockchain infrastructure. APIS is architecturally decentralized, in 

that the providers of the endpointed data can be any actor joins the APIS network, but 

logically centralized, in that client-side developers will be able to reference common, 

frequented API formatting structures, namely RESTful and GraphQL endpoints, to query 

datasets generated by public blockchains. 
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1 Background 

1.1 Background 

 

Public blockchain architectures have allowed for the next iteration of the internet: 

the decentralization of digital applications. Decentralized, digital applications are 

currently categorized in two subsequent groups: decentralized finance and the 

decentralized web.  

 

Decentralized finance has achieved significantly more adoption than 

decentralized web, for a variety of factors, although the most significant is the 

difference in computational overhead required to create a contemporary user 

experience: the computation of money or money-like instruments is primarily 

dependent on floating-point arithmetic, computationally light to conduct in 

contrast to the algorithms required for the par-functioning of web applications 

reliant on ‘news feeds’, ‘matching algorithms’, and ‘product recommendations’. 

Consequently, decentralized finance can achieve private scalability at the same 

throughput as international payment networks, such as SWIFT [1], today and 

promises to achieve private scalability on par with modern domestic payment 

networks, such as VISA, in the near future. Decentralized finance will continue to 

subsume additional financial applications beyond payments, namely investing, 

trading, lending, and savings. These four use cases have begun to show 

meaningful growth as decentralized finance continue to scale.  

 

The decentralized web is further from mainstream adoption: we approximate 

that popular decentralized web protocols today are three to five years behind 

their decentralized finance counterparts in terms of privacy and performance. 

While decentralized finance can leverage zero-knowledge-proofs to achieve 

private scalability, and the rate of zero-knowledge proof improvement has been 

exponential [2], the decentralized web is dependent on technology still further in 
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its infancy, namely secure multi-party-computation (sMPC) and fully 

homomorphic encryption (FHE) [3]. As these cryptography technologies 

continue to scale in the same way that zero-knowledge proofs have over the last 

five years, the decentralized web will be able to reach the same adoption as 

decentralized finance.   

 

However, so long as there exists any degree of centralization of decentralized 

financial and web products, the entire system is at risk. API’s Law states that: “A 

product is only as decentralized as its most centralized component.” We present 

APIS in order to realize a vision of decentralized finance and web, without any 

platform risk that would be subjugated to local regulations, specifically those in 

regimes that currently control the global regime and so are incentivized to 

mitigate disruption. The most centralized component of the decentralized 

finance and decentralized web stacks are the data index and querying layer, a 

mission-critical component without which decentralized applications would not 

be able to achieve mainstream adoption. Thus, APIS allows for decentralized 

finance and web products to permeate the world while maintaining the security 

properties of a fully decentralized web architecture. 

1.2 Introduction 

 

Current public blockchains (such as Ethereum and Filecoin) were launched as 

maximally decentralized, but quickly became re-centralized around elements 

that solved user pain points. The most prominent centralization success has been 

centralized exchanges, although the exponential adoption of decentralized 

exchanges renders that this centralized feature of public blockchain systems 

(centralized exchanges) will soon become decentralized [4].  

 

Thus, after exchanges, we turn towards what will now become the largest, most 

mission-critical, yet still centralized feature of the public blockchain design space: 
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the database layer, herein also referred to as the query layer. The query layer is 

mission-critical for all decentralized applications. 

 

 

 
Figure 1.2.1: Current Decentralized Application Architecture. 

 

End-user client applications typically interact with a public blockchain through 

the following process: a transaction is signed by the user’s private key [5] via a 

client-side light client [6] and subsequently propagated by a full node, whose 

uptime is promised by the application itself or a third-party service provider, to 

additional full nodes, including validators of the public blockchain, who then 

compute the result of that transaction and package both the transaction and its 

results into their ensuing block, should the fee paid to the validator incentivize 

them to choose that transaction over additional transactions. The process of 

sending a transaction is herein referred to as writing to the blockchain. The most 
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significant barrier of writing to the blockchain is the optimization of the 

transaction fee paid to the network [7], as variant fees for transaction inclusion 

exist for frequently used blockchains, which manifests itself in either failed 

transactions [8] or over-paid transactions [9], both of which perpetuate the poor 

user experiences that public blockchains are known for.  

 

Across all public blockchain virtual machines of mainstream usage, writing to 

the blockchain generates events and logs [10] that exist as a result of transactions 

and the interactions with smart contracts; events and logs serve the primary 

purpose of the generation of return values for decentralized application user 

interfaces. However, the management of events and logs and their resultant 

states emitted from smart contracts is a time-intensive, computationally heavy 

process, for which the overwhelming a majority of developers do not possess 

resources to execute. Smart contract and decentralized application developers are 

best suited optimizing for the secure execution of their contracts, as well as 

finding product-market fit for those products. The market for specialized index 

and query services has grown at an exponential pace [11], but the market leaders 

are centralized service providers, whose operators and shareholders are subject 

to the regulation of the states in which they operate. These index and query 

service leaders are incentivized to form monopolies to extract excess fees and 

profits, ultimately passing the cost to users and developers at large. 

Decentralized applications reliant on centralized service providers are subject to 

gatekeeper and platform risk that can create an unfavorable developer 

experience. For any consumer application, all it requires is one poor user 

experience for a user to never trust a product again [12]. All of a developer’s 

work can be destroyed overnight.  

 

APIS provides a protocol for the decentralization of index and query services for 

reading data from and writing data to the blockchain, which will include gas 

optimization indices to help developers and users write to the blockchain as 



7 
 

efficiently as possible, thus ensuring a fully decentralized architecture for the 

decentralized web, its builders, and its users. 

2 Architecture 
 

APIS achieves its decentralized query and index architecture through the 

utilization of a publish-subscribe message propagation protocol [13], on which is 

overlayed an incentive-driven, decentralized organization enabled by the 

Ethereum public blockchain and a customized layer-two system whose 

characteristics exhibit that of an optimistic rollup [14].  

2.1 Message Propagation Protocol 

 

The APIS Network is composed of two actors, both of which are open and 

configurable by any party: APIS Gateways and APIS Nodes. Queries requested 

by decentralized applications and their developers are responded to by APIS 

Gateways, while APIS Nodes index and manage databases pertaining to one or a 

group of smart contracts, such that APIS Nodes can respond to APIS Gateway 

requests with an average response time of 400ms (ϵ(t) < 400ms), under the 

condition that the requested endpoint from the APIS Gateway is already 

maintained by an APIS Node. 

 

 
Figure 2.1.1: APIS Network Message Propagation Protocol. 
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Communication between Gateways and Nodes is maintained through a 

brokerless, libp2p publish-subscribe messaging protocol, wherein Nodes 

subscribe to messages from a Gateway, which they can receive directly from the 

Gateway or from additional Nodes who also have also subscribed to that 

Gateway’s messaging propagation, although Nodes should assume counterparty 

Nodes are adversarial at all times, per any well-designed crypto-economic 

system.  

 

Gateways maintains a registry of the subscribing Nodes from which they request 

endpoints based on the <ID> of the endpoint, as Nodes will only index a select 

group of IDs. IDs are representational hashes of the datasets supported by the 

Network; only the hash of the ID is maintained on-chain in the Node and 

Gateway State Tries, described further in 2.6 Optimistic Rollup Contract. It is up to 

each Gateway to determine how to filter messages from Nodes for each endpoint 

response, although we recommend a first-in, first-out approach, wherein 

subsequent messages, should they differ from the first sent message, can provide 

the Gateway with evidence warranting of initiating a challenge, described 

further in 2.5 Dispute Resolution Contract Factory. 

 

 2.2 Message Formatting Overview 

 

Queries are sent by client-side applications directly to Gateways and returned by 

Gateways in industry standard GraphQL and REST formatting, thus allowing for 

the adoption of APIS by a global developer pool and consequently expanding the 

developer market of public blockchains. GraphQL and RESTful differentiate 

themselves in how they manage and return queries: GraphQL provides a single 

endpoint for the requested data, while REST provides multiple endpoints, which 

renders REST less efficient but also more customizable. REST has achieved more 

significant mainstream adoption than GraphQL due to its first-mover advantage 

and consequent well-known integrations; however, GraphQL can tailor its query 
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responses to exactly what the query is requesting, thus ensuring that there is no 

overfetching of data and that the application only receives the data that it needs 

with one, unilateral mode of communication. We believe that GraphQL will 

ultimately overtake REST, but to encourage adoption by as many engineers as 

possible, APIS Gateways will support both API formats for the foreseeable 

future. 

 

To maintain optimal communication between APIS Nodes and Gateways, APIS 

Nodes will only support RESTful requests at launch, as RESTful requests can be 

packaged by APIS Gateways into GraphQL format, through the APIS RG 

Converter, a proprietary but open-sourced technology that builds on the well-

known stitching [15] and prefixing [16] techniques implemented in past 

conversation schemes. Thus, Gateways allows for the APIS network to support 

both types of queries by clients, while mitigating the operational intensity 

required to run an APIS Node. The APIS RG Converter can transform RESTful 

endpoint into a GraphQL endpoint (and vice-versa) in under 100ms (ϵ < 100ms), 

with an approximate success time of 95ms.   

 

  

 

 
 

 

 

 

Figure 2.2.1: APIS RG Conversion Time across internal practical tests. 
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95ms, when added to the 400ms roundtrip estimation of message 

communication, renders a query to be returned in 500ms or less (ϵ < 500ms). The 

performance of the network will scale as the network scales, as Gateways and 

Nodes alike will compete with return queries under the fastest possible 

conditions, such as to win third-party client developer business. This is a long-

term economic benefit of a protocol over a centralized aggregrator, who can 

afford to innovate at a slower rate due to monopolistic market practices. 

However, in the interim, it is estimated that sub-500ms return times are adequate 

for decentralized finance and web user experiences. 

2.3 APIS Core Contracts 

 

APIS Gateways and Nodes act under rational economic incentives, enlisting their 

services for fees in an environment assumed to be perpetually adversarial. The 

state of the APIS Network is maintained by the APIS smart contract and layer-

two rollup architecture, deployed on the Ethereum public blockchain.  
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Figure 2.3.1: APIS Network Ethereum Layer-One and Layer-Two Architecture. 

 

The three primary contracts deployed on the Ethereum public blockchain are the 

governance contract, the dispute resolution factory contract, and the optimistic 

rollup contract. The governance contract allows for the configuration and 

upgrade of the rest of the architecture; the dispute resolution contract factory 

ensures that APIS Gateways and Nodes are incentivizes to only complete 

accurate responses; the optimistic rollup contract allows the architecture to scale 

significantly beyond the throughput of the current Ethereum public blockchain. 

Throughout the entire design, the concept of superfluidity is emphasized with 

regards to the API token, such that the holder of the token can participate in 

governance, dispute resolution, and optimistic rollup validation simultaneously, 

maximizing the potential revenue generation to API token holders. 
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2.4 Governance Contract (GC) 

 

APIS is upgraded and configured by the decentralized group of API token 

holders, thus driving the Governance Contract (GC) to be the most important 

object in the design. The GC is a customized fork from the open-sourced 

Compound Governance Contract, which has proven to be the most 

comprehensive, well-audited governance module in the Ethereum ecosystem, as 

exhibited by its redeployment by other notable layer-two protocols, such as 

yearn.finance [17]. The purpose of the GC is to allow API token holders to 

upgrade the APIS Dispute Resolution Factory Contract and the APIS Optimistic 

Rollup Contract, as well as to implement additional smart contracts into the APIS 

protocol. API token holders can vote directly or delegate their votes to trusted 

counterparties; all votes require that the tokens remain locked in the GC for time 

= 1.504 days (10,000 Ethereum mainnet blocks) after the quorum is reached and 

the vote is finalized, to disincentivize malicious parties from purchasing API 

tokens to pass APIS Improvement Proposals (APiiPs) that negatively affect the 

APIS Network. The quorum required to approve an APiiP will be 25% of the 

network, although we hope that future APiiPs will vote to raise the quorum 

requirement as the project becomes increasingly decentralized through the API 

Liquidity Mining Program, as illustrated further in 3.3 Community Ownership. 

2.5 Dispute Resolution Contract (DRC) Factory  

 

The APIS Dispute Resolution Contract (DRC) Factory was initially designed as a 

function within the Governance Contract, but was later separated into its own 

contract to ensure complete modularity, allowing for upgrades to the DRC when 

a less subjective resolution mechanism is able to be deployed, which should be 

the case as zero-knowledge-proofs continue to scale. The purpose of the DRC 

Factory is to allow API holders to vote specifically on events that have happened 

off-chain, namely whether a Node or Gateway provided a fraudulent or 
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misrepresented endpoint, either to another Gateway or end-user client. API 

tokens staked in the GC can be used to stake in the DRC (and in the Optimistic 

Rollup Contract, as described in 2.6) simultaneously, although requiring the signing 

of an additional transaction on the Ethereum mainnet. 

 

The DRC Factory utilizes customized, stake-driven voting functions, namely a 

<challenge> function and a <defend> function through which an API token 

holder signals their vote with the staking of their API tokens. The Factory merges 

these functions with simple opcodes, namely CREATE2, to allow anyone to 

deploy a Dispute Resolution Sub-contract (DRS), whose address and state is 

stored in the DRC Factory as a key-value mapping; a DRS can either have one of 

two states in the DRC Factory contract: <True> or <False>. In light of due process, 

all DRS are defaulted as <False>.  

 

 
Figure 2.5.1: DRC Factory Simplified Architecture. 

 

All DRSs have 7.52 days (50,000 Ethereum mainnet blocks) to resolve itself, after 

which, if still unresolved, the entire system forks into two separate universes, in 

a design very similar to Augur’s stale-state solution [18]. At that point, API token 
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holders must decide which fork of the network to recognize as canonical, based 

on what they believe the proper Dispute Resolution Outcome should be.  

 

A DRS’s only purpose is to resolve whether a transaction from the Optimistic 

Rollup Contract (ORC) as either <True> or <False>. To conduct a knowledgeable 

vote, API holders must be aware of the endpoint that was sent either from the 

Gateway to the User or the Node to the Gateway. Thus, every Payment 

Transaction in the Optimistic Rollup Contract has the structure:  <Client Account 

Address, Client Account Signature, Server Account Address, Server Account 

Signature, Transaction Amount, Endpoint Hash, Nonce>, where the Client is the 

Payer (either an End-user Client or Gateway) and the Server is the Payee (either a 

Gateway or Node).  

 

         { 

       struct PaymentTransaction { 

               address client; 

               signature client; 

               address server; 

               signature server; 

               uint amount; 

               string[] endpoint; 

               uint nonce; 

          } 

            } 

         }  

Figure 2.5.2: Customized Payment Transaction Structure 

 

The Endpoint Hash provides the canonical truth of what the delivered endpoint, 

such that voters of a DRS can simply check the result of their Endpoint Hash of 

the requested endpoint against the Endpoint Hash in the transaction that has 

been challenged. If the voter’s Endpoint Hash matches that of the transaction, the 

voter will vote that the transaction was <True> and consequently that DRS is 
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<False>; if the voter’s Endpoint Hash does not match that of the transaction, the 

voter will vote that the transaction was <False> and consequently that the DRS is 

<True>.  

 

In order to generate the Endpoint Hash, the voter must have access to the 

Endpoint that was sent to the requester. To achieve this, all APIS Nodes and 

Gateways default to store transmitted Endpoints for 7.52 days (50,000 Ethereum 

mainnet blocks), after which Nodes and Gateways can prune the full Endpoint 

data from their storage. Full Endpoint data (the Endpoint Hash represents this 

data) consists of: <ID>, a hash representation of the dataset from which the API 

was called; <DataType>, with two possible returns of GraphQL or REST; 

<MessageInputs>, the specific variables that were requested in the API call; and 

<MessageOutputs>, the specific responses to the variables that were requested, 

with both <MessageInputs> and <MessageOuputs> strored in equal size arrays, 

such that they can be counter-checked. Because of the blockchain’s inability to 

objectively verify whether a <MessageOutput> was the correct response to the 

<MessageInput>, dispute resolution is a subjective process, but with clear on-chain 

references to use as canons. If a DRS is settled as <True>, the server party (APIS 

Node or Gateway) that had been paid for the API request will have their API 

stake slashed, at a ratio of: 

𝑘 ∗ ∑ 𝑥(
𝑧

𝑦
)

𝑛

𝑖=1
, 

where x is their API tokens at stake, y is the time that their API stake has been 

locked in the Optimistic Rollup Contract (see 2.6 below), z is the number of offences 

that have been generated since that stake was deposited (starts to 1, increases by 

1 every false offense, which will be recognizable both in the Node and Gateway 

State Tries in the ORC), and k = 0.326. Payments are not rolled back in the case of 

proven fraud by a Node or Gateway; instead, the slashed stake is distributed at 

the ratio of 10-90 between the client that was frauded and the group of parties 

that voted correctly, proportionate to the size of their vote. It requires a 

minimum stake of 1,000 API tokens to act as a Node or Gateway, although we 
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believe that the most used Nodes and Gateways will have staked a significantly 

higher amount of API, as the more API at stake, the more trustworthy they will 

be, the more usage they will obtain. 

 

If a challenge itself is fraudulent, and not the API request, the challenger will 

have their stake slashed: it requires a stake of 500 API tokens to initiate a 

challenge, to mitigate spam. While this may incur friction for people wishing to 

challenge, obtaining 500 API tokens is feasible due to its exchange liquidity, and 

the upside from a correct challenge is designed to exceed the gas costs by at least 

ten-fold. If a challenger is wrong, their stake is distributed at a ratio of 10/90 to 

the party who enacted the correct API request and the group of parties that voted 

correctly, proportionate to the size of their vote. 

 

In order to challenge a challenge, a group of parties must stake at least one-and-

a-half times the amount of funds currently staked on the other side of the vote, 

within 18.1 hours of the last challenge (5,000 Ethereum mainnet blocks). If the 

DRS is not resolved after 7.52 days (50,000 Ethereum mainnet blocks), the system 

forks, with individual users deciding which fork to support. The goal of forking 

is to encourage faster resolution, as it is likely the market will converge upon one 

of the forks at a least a 90-10 ratio, as is common with most public blockchain 

protocol forks. 

2.6 Optimistic Rollup Contract 

 

The Optimistic Rollup Contract (ORC) holds the Node State, the Gateway State, 

the Transaction State, and the Account State. The Account State is most frequent 

across all account-based optimistic rollups, what will continue to be the status 

quo in transaction execution for both mainchains and rollups, despite the recent 

popularity in UTXO-based optimistic rollups [19]. All states are represented on 

the Ethereum mainchain as hashes of their corresponding Patricia Merkle Trie 
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[20]. The Node and Gateway Tries are of depth 14, allowing for 214(1.6 ∗ 104) 

Nodes and Gateways, with the ability for the depth size to be increased in the 

future via an APiiP. The Account State is of depth 22, allowing 222(4.2 ∗

106) accounts (which sums to the Users, Gateways, and Nodes), with the ability 

for depth size to be increased in the future via an APiiP. The Transaction State 

Trie is of depth 40, allowing for 240(1.1 ∗ 1012) transactions, with transactions 

that have been processed and not challenged either in the DRC Factor or the 

ORC for 50,000 blocks (7.52 days) pruned and removed from the Transaction 

Trie. Transactions pruned from Trie can be maintained by Nodes and Gateways 

for longer if desired, although there is no reason to hold them via the incentives 

of the APIS protocol.  

 

The Transaction Trie has three sub-Tries, of which referenced prior has only been 

the Payment Trie. In addition to the Payment Trie, a Node Update Trie and Gateway 

Update Trie have been implemented to allow for the customized updating of the 

Node State and Gateway State Tries. Both Node and Gateway Transactions 

contains identical structures, with the primary purpose of allowing Nodes and 

Gateways to increase or decrease their API at stake, which, to be valid, must 

already have been deposited into the ORC via a standard smart contract deposit 

transaction on the Ethereum mainnet: <Node/Gateway Address, Node/Gateway 

Signature, Node/Gateway Staked Deposit (negative integers are allowed, with a 

check that the Account Stake as listed in the Node/Gateway State Trie is greater 

than or equal to the withdrawal amount), ID hash (the hash of all IDs currently 

supported by that Node or Gateway), Nonce>.  

 

         { 

       struct NodeUpdateTransaction { 

               address node; 

               signature node; 

               int change; 

               string identity; 
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               uint nonce; 

          } 

            } 

         }  

Figure 2.6.1: Customized Node State Update Transaction Field. 

 

The ORC also contains the Optimism Fraud Proof’s standard public functions, 

which allow for fraudulent state updates to be challenged and resolved without 

requiring interaction other than the initiated challenge itself [21]. It should be 

noted for emphasis that DRC and ORC fraud proofs are distinct processes (The 

DCR is highly interactive, due to the subjectivity over the truthfulness of the 

items being disputed, whereas the ORC will become highly objective overtime, 

due to the usage of the Ethereum mainchain as a data storage layer.).  ORC 

Fraud Proofs rely on data availability, namely that all state updates have 

corresponding transactions readily available on the Ethereum mainnet, primarily 

stored as call data [22].  

 

To ensure data availability while maintain scalability, a pruned-version of 

transaction information that is included in the Transaction Trie is stored as call 

data on the Ethereum mainchain: <TrieID (a reference to one of the three 

transaction tries), TransactionHash (a hash representation of the transaction)>, 

where the Trie ID is 4 bytes and the Transaction Hash is 32 bytes, such that each 

transaction only uses 36 bytes of call data. A standard Ethereum transaction is 

247 bytes [23] and requires 21,000 gas because of its use of the Ethereum State 

Trie; APIS’s optimistic rollup architecture has effectively batched transactions at 

a ratio of 125:1, thus allowing for 1,875 transactions per second, or 1,875 API calls 

per second, compared to the Ethereum mainnet’s current throughput of 15 

transactions per second. 

 

If an ORC state update is found to be fraudulent, the validator’s bonded APX 

tokens are slashed and distributed to the party that found and report the 
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fraudulent block transition. Any party can submit an APIS ORC block to the 

blockchain so long as they have bonded 10,000 API tokens bonded in the ORC 

contract. Like the DRC Factory, tokens staked in the APIS GC can be staked in 

the ORC as a validator, per the system’s design requirement of superfluidity. 

 

If our optimistic rollup design cannot scale to meet demand, we will transition to 

a zero-knowledge rollup design, leveraging either a modified version of zkSync 

or Validium, depending on scaling requirements required by user demand [24]. 

 

3 Applications  
 

The Applications of the APIS network are twofold: to create better end-user 

experiences and to create better developer experiences. For end-users, APIS 

allows developers to seamless integrate features with guaranteed 100% uptime, 

censorship resistance, and near-zero platform risk. While the uptime and 

censorship resistance features of a decentralized network has been discussed 

thoroughly by the public blockchain community, we believe that platform risk 

remains under-discussed. Developers who utilize the APIS network for their 

decentralized applications will never be upcharged by a monopolistic, profit-

seeking company, as protocols create markets, not monopolies [25]. The platform 

risk view can be further substantiated by Metamask’s recent change in open-

source licensing, leaving developers to question whether a Metamask integration 

will require fees in the future [26]. APIS already supports all queries and indexes 

of Ethereum through the aggregation of APIS’s centralized competitors, and 

shortly thereafter will support IPFS and Filecoin due to its growing popularity. 

Additionally, any additional blockchains can be added to the APIS index and 

query protocol, should an ID for that blockchain be created by an APIS Gateway 

or Node.  
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3.1 IDs 

 

Ethereum and IPFS both contain terabytes of data that could be indexed and 

queried, with their datasets growing daily. Thus, APIS introduces the concept of 

IDs, such that only relevant datasets to the APIS’s clients are indexed by APIS 

Gateways and Nodes. IDs are standardized references to specific Ethereum 

smart contracts or IPFS hashes that developers wish to index. APIS Gateways 

and Nodes are incentivized to index all IDs that developers and users find 

relevant; thus, APIS already supports all notable decentralized finance IDs of 

notable volume, such that datasets from any automated market maker, 

decentralized exchange, on-chain lender, and on-chain aggregator can be 

queried.  

 

IDs are to be requested and added through off-chain proposals on the APIS 

Governance Module, separate from the on-chain APIS Governance Contract. 

Once an ID is requested, Gateways and Nodes signal their support by 

conducting a Gateway or Node transaction in the ORC, adding the ID to their 

registry. The transaction acts of proof of their support of the ID, which allows for 

Gateways and Nodes to search for each other to offer more complete datasets, 

without needing to know each other prior. This allows for the network to become 

more decentralized, as Nodes and Gateway can employ a standard internal, 

private reputation system of their connections based on uptime and API tokens 

at stake, with initial communication driven by a desire to include additional IDs 

into their service offering. Additionally, the Dispute Resolution Contract (DRC) 

protocol references IDs in each dispute, such that API token holders can be fully 

knowledgeable of the matter of dispute. 
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3.2 API Token 

 

As referenced prior, the API token is designed to be superfluid, utilized for on-

chain governance, dispute resolution staking, and optimistic rollup validating 

simultaneously. Thus, those that own or earn API tokens maintain a voice over 

the entire APIS protocol, earning fees for their actions. Because a majority of 

tokens today are unmined, API tokens will be distributed via a usage mining 

program derived the usage of the protocol itself, namely through fees paid, as 

money is the most objective measure usage.  

 

APIS users tend to be technically competent developers, who then can vote on 

APiiPs, resolve disputes, and deploy their own APIS Nodes or Gateways. It is 

imperative that all APIS actors who could harm the network have API at stake, 

due to the well-researched nothing-at-stake problem set [27]. 

 



22 
 

 
Figure 3.2.1: Superfluid API Composition. 

3.3 Token Distribution, Community Ownership 

 

In the ORC State Trie, the Liquidity Mining Account (LMA) will be publicly 

noted. The LMA will distribute API tokens once per week, similar to Synthetix’s 

model. The Account is currently controlled via a nine-person multi-sig, overseen 

by the APSs Council, although the Council will eventually be removed and 

replace it with the APIS Governance Contract, such that API token holders can 

vote each week whether the supply is increased or not. This allows API holders 
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to prevent future inflation, should they believe it is no longer needed, as market-

blind liquidity mining, as most projects have implemented [28], has proven to be 

less optimal than market-aware liquidity mining, as exemplified by yearn.finance 

[29]. 

 

As referenced prior, API Liquidity Mining is achieved through usage, not the 

liquidity of the APIS platform itself. While many protocols have opted to 

incentivize the trading and lending of their token, the APIS network is best 

suited incentivizing API queries and API calls, rewarding those who use the 

protocol for its intended purpose, paying and receiving fees for the service that 

the network provides (demand side and supply side). Third-party client 

developers and APIS Nodes & Gateways will receive a monthly payout 

according the following function: 

𝑇 ∗   ∑(
𝑖=1

𝑛
F

𝑇𝐹) ⁄  

where F is fees paid by each third-party developer to each Node or Gateway, TF 

is the total amount of fees paid on the network, and T is the amount of tokens 

allocated to the program by the network for that month. We have considered 

taking the sum of the square root of fees paid to disincentive wash-trading and 

instead to encourage the usage by third-party developers of a wide variety of 

Gateways and Nodes, incentivizing maximal decentralization of the network. 

However, we will leave this decision to a community vote. T is currently a 

variable number of API per month, following an S-Curve that aligns with a two-

year adoption cycle, and will be released online shortly, but may be altered based 

on the APIS community’s vote at large once the governance module passes a 

proposal removing the power from the Council and placing it to the APIS 

community via an APiiP. 

 

 



24 
 

4 Discussion 
 

In this paper, we have presented a scalable, decentralized protocol for the 

indexing and querying of datasets inherent to public blockchains. The protocol is 

based on knowledge of REST and GraphQL message formatting and 

optimization, consequently ensuring that developers can obtain data from 

Ethereum, Filecoin, and all other relevant blockchains with uptime guarantees, 

hyper-competitive market pricing, and in formats that mainstream developers 

have vast experience integrating with already. The protocol is composed of two 

groups: Gateways and Nodes, although a Gateway can be a Node and vice-versa. 

The purpose of the dual infrastructure is to allow developers to select receive 

endpoints as quickly as possible, while ensuring that both the providers of 

endpoints are incentivized to act in the best interest of the APIS Network. The 

APIS Network is community governed, with governance primarily focused on 

the Dispute Resolution Contract, which has been influenced by the Augur 

project’s approach to subjective oracle design, and the Optimistic Rollup 

Contract, which has been influenced by the work of Optimism. Lastly, to 

encourage maximal community ownership and corresponding decentralization, 

users of APIS will receive API tokens proportionate to their usage, with a system 

designed to mitigate wash-trading and encouraging further decentralization of 

Nodes and Gateways. The remaining of the paper is dedicated to an analysis and 

overview of REST and GraphQL APIs, namely how each standard functions and 

the tradeoffs therein. 

 

5 Appendix: Analysis of REST versus GraphQL 

5.1 REST History and Analysis 

 

Representational State Transfer (REST) [30] is a software architectural style that 

defines much of how information is currently transferred between previous 
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unconnected, distinct web applications. REST APIs now compose approximately 

71% of the global API market share [31], foot-holding as the foundation upon 

which many of the world’s most popular web services are serviced to consumers 

by developers. 

Any web application that deploys a REST architecture for API interaction, 

and in doing so become known as RESTful, must comply with five guiding 

constraints. These constraints restrict the ways that a server can process and 

respond to client query requests, but, in doing so, provide websites a number of 

desirable properties with regards to efficiency, scalability, and simplicity. The 

constraints are as follows:  

● Client-Server Architecture: The basic principle of client-server 

architecture is that there exists a clear separation between the data queried 

and the user-interface that the data provider typically utilizes to represent 

that data. To provide a concrete example, a Facebook API should not 

explicitly mirror Facebook’s own front-end interface. Thus, third-party 

developers who query a Facebook API should not be forced to interact 

with, for example, a Facebook ‘profile page’ endpoint but rather 

information about a ‘user,’ which the third-party developer can then 

utilize in their web application’s distinct user-interface. 

● Statelessness: No data that has been queried should be stored on the 

server in-between requests, such that servicing any additional query 

possesses a marginal cost of zero to the data provider. As such, every 

request made by a client developer must contain all the information 

necessary for the server to service that request. 

● Cacheability: Clients are able to cache responses. Caching means ‘store 

for later,’ which renders that the client can avoid asking a server for 

information if the client has already asked for it earlier. For example, if I 

request someone’s Facebook profile through the Facebook API, I can cache 

that information so that I don’t need to request it the next time I need it. 
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● Layered Architecture: A client should not ordinarily be able to tell 

whether the client is connected directly to the provider’s end-server [32] 

or an intermediary server that exists between the end-server and the 

client. For example, if server-side web application utilizes a load balancer, 

a technology that allows developers to distribute requests across multiple 

servers such that no single server becomes inundated, the client 

requesting data from that web application should still continue fully 

performant communication with the layer of the server architecture 

providing the response, not requiring any additional code by the client or 

server architecture.  

● Uniform Interface: A uniform interface is, per third-party developer 

experiences, the most significant element of REST, distinguishing it from 

competing architectural styles. A uniform interface decouples a web 

application’s interface from its implementation, meaning that regardless 

what a web application does, developers can interact with its API in the 

same way. Thus, developers can interact with all of their provided REST 

APIs in exactly the same way, even if the information they are retrieving is 

entirely distinct. REST achieves this highly desirable malleability due to 

four constraints:  

○ Identification of Resources: The REST style differs from preceding 

APIs because it is centered around resources as opposed to methods 

or procedures. These resources can effectively take any form (be it a 

static picture or a feed of real-time stock prices), but they usually 

represent entities from the business domain (customers, orders, 

prices, products, etc). Regardless of the data that the resource 

provides, the resource must be uniquely identifiable via a Uniform 

Resource Identifier (URI); notably, the resource’s identifier must be 

stable even if the resource itself is changed. For example, if Spotify 

were to update the album art for a given song, a develop would 
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still to find it in the same query via their API; nothing would 

change for the developer reliant on the API.  

○ Manipulation of Resources through Representation: A client not 

have direct access to a server-side database through the server’s 

API. If a client wishes to manipulate information through the 

server’s API, such as to change a user's profile picture, the client 

must grab a copy of that resource, manipulate it, send the updated 

representation to the server, and ask the server to update its 

underlying resource. The server can then decide if this is an 

appropriate change to make, thereby protecting the companies 

underlying data-store from malicious edits. 

○ Self-Descriptive Messages: The Self-Descriptive Message 

constraint requires a message (be it a request or a response) to 

include enough information for the receiver to understand it in 

isolation. We’ll cover what this means in greater detail when 

describing how REST APIs work in practice below.  

○ Hypermedia as the Engine of Application State: Any RESTful 

application should be entirely navigable through links. Navigable 

links has allowed end-user clients to navigate to any part of a 

website from a single ‘base’ URI, such as facebook.com, and, for 

developers requesting APIs, it means the developer doesn’t need to 

look at specified API documentation to purvey how to obtain a 

desired resource. 

○ Code on Demand: A server can extend the functionality of a client 

at runtime by sending code to the client that the client should 

execute (like JavaApplets or JavaScript). This property is similar to 

the cacheability of REST, highlighting the architecture’s high 

performance. 
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5.2 REST APIs in Practice: 

 

If a client-side developer wishes to interact with an API, the developer need to 

place a request that contains a certain amount of information:  

● The Endpoint: The endpoint is the URL at which the developer is making 

a request, and will define the kinds of information that the develop can 

receive. The structure of an endpoint is as follows: 

○ An endpoint always begins with a root, which typically represents 

the high-level URL that the developer is interacting with. For 

example, if a developer is interacting with Facebook’s API 

(Facebook.com, not Facebook’s subsidiary companies’ APIs), the 

request will always start with https://graph.facebook.com. 

○ From there, the client-side developer must specify the path by 

which to retrieve the desired information. As a metaphor, one can 

think of this sub-section of the endpoint as an automated answer 

machine, where the developer presses numbers to navigate 

through a menu to the intended destination. As an example, if a 

developer wanted to see who all of someone’s Facebook friends, 

that path would be /user-id/friends. It’s important to note that this 

looks exactly the same if the developer were utilizing Spotify’s API 

to obtain the same information, going through links instead. To see 

who a user’s friends are on Facebook via Spotify, the developer 

would still need to click to the user’s profile (user-id), and then 

click again to see the user’s friends. 

● The Method: The method defines the type of request that the client-side 

developer sends to the server, which are usually one of five types, and 

allow for all the basic CRUD (create, remove, update, delete) operations:  

○ GET: The developer gets the resource from the server, i.e. get a 

user's Facebook friends. 

https://graph.facebook.com/


29 
 

○ POST: The developer creates a new resource on the server, i.e. 

share a photo to a user’s Facebook profile.  

○ PUT: The developer overwrites a resource on the server, i.e. adding 

changing a user’s profile picture on Facebook.  

○ PATCH: The developer updates parts of an existing resource in the 

server, i.e. changing just a user’s description in the user’s profile 

page. PUT and PATCH are fairly similar and choosing which one 

to use is case specific and a frequent topic of debate [33]. 

○ DELETE: The developer removes a resource from the server, i.e. 

removing a Facebook post. 

● The Headers: Headers provide information to the client-side party about 

how information can be handled by the client-side application, namely the 

kinds of access an individual is allowed. For example, updating a user’s 

Facebook profile through Facebook’s API is allowed only by that user him 

or herself, thus rendering that the user of the client-side application must 

proves an access-token that proves the server has given them permission 

to make changes to that user’s profile; that access-token would be 

included as a header, such that the client-side application can provide the 

desired actions to their end-user. An example list of headers can be found 

here [34]. 

● The Data (or Body): The Data (or Body) provides information that the 

client wishes to revert to the server and is only used to perform a create, 

update, or delete action. For example, if a user wants to change his or her 

Facebook profile picture on a client-application that utilizes Facebook’s 

API, the message reverted to the Facebook server must include the image 

that needs to be uploaded as the replacement. 

 

To put this all together, we construct an example query and response, shown 

below, illustrating a simple yet precise interaction with a REST API: 

● Request: api.example.com/GET/users/10 
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● Response:  

          {  

   “user”: { 

                   “id” : 10, 

                   “name” : “Satoshi Nakamoto”, 

                   “nickname” : “Seb”, 

                   “height” : 180, 

                   “Image_url” : “/images/10.jpg” 

              } 

          } 

Figure 5.2.1: REST API Response. 

5.3 Strengths and Weaknesses of REST: 

 

Now that we have illustrated what a REST API is, and how developers can 

interact with REST APIs, it is important to discuss the characteristics are that 

have made REST so successful, and what shortcomings are threatening its 

sustainability going forward. 

● Strengths:  

○ Flexible across languages and frameworks: One obvious reason 

why the REST API has been so successful is that it works across 

languages and frameworks. No matter how developers build their 

applications, a REST API will work for them. 

○ High interpretability: The fact that REST APIs are URL-based, 

where each URL gives access to a certain amount of information, 

renders REST APIs incredibly simple to interpret. All a third-party 

developer requires is a URL, an understanding of what information 

they will find there, and an understanding of how they can interact 

with that information.  
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○ Server-side Logic: For a company building a REST API, its URL 

driven nature is extremely simple to work with. The server-side 

developers simply define a URL where they want certain 

information to be visible, write logic for how to handle each type of 

request, and the endpoint is created. However, as a company's API 

scales in usage, figuring out the optimal way to structure endpoints 

and the information they provide increases in complexity, a relative 

weakness of this architecture, transitioning to our next section.  

● Weaknesses:  

○ Multiple Round Trip (Latency): The client will often need to 

execute multiple trips to the server to fetch all of the information 

the client requires. Each endpoint specifies a fixed amount of 

information, and in many cases that information is only a subset of 

what a client requires to populate the client’s page. As exhibited in 

Figure 5.2.1 above, what if the client wished to display the users 

image as well as their nickname in the client’s application? The 

client send a GET request for the users information, thus obtaining 

the location of the users image from the response, and then send 

another GET request for the image URL. Every time the client 

executes an extra request, another trip needs to be made back and 

forth to the server, which requires additional time and thus 

weakens user experience. 

○ Verbose: When a client makes a request via a REST API, the 

developer will get back all of the information stored there, even if 

the developer doesn’t need all of it. For example, if a client is only 

interested in the name and age of a user on Facebook, when the 

client queries Facebook’s API, the client will get this information, 

but will also receive all of the other information associated with 

that user endpoint, such as the user’s profile picture, city of 

residence, email address, etc. This leads to the transfer of excess 
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information, which causes the client to filter which parts of the 

response the client wishes to utilize, increasing the time to provide 

the end-user experience. Though developers have established 

numerous methods to solve the problem of REST excess, the excess 

still always adds significant overhead for client-side developers, as 

the client-side developers need to make a lot of edge cases for 

certain parameters being passed through.  

○ Security with Multiple Endpoints: Given that each endpoint is 

static and contains only a small set of information, the number of 

endpoints scales almost linearly with the amount of information 

servers wish to expose. Thus, popular web applications tend to 

build out a significant number of endpoints. This is a nightmare for 

data security, as companies have hundreds of different access 

points to their server-side logic, and bad-actors will search for 

vulnerabilities across each one of them.  

○ Documentation: One of the biggest drawbacks of REST APIs is that 

they are schema-less, which means client-side developers have no 

idea what data structure will be returned when querying an API. 

There is no way to understand from the endpoint itself what the 

client will be receiving, and as such the back-end server-side 

developers must maintain robust documentation to give their users 

an idea of what to expect. This can be a nightmare to do, especially 

if the server-side developers attempt to document their API 

retroactively, and can also lead to slow ramp times for new 

developers coming in. This is far from an impossible problem to 

solve, but still a headache to contend with when working with 

REST. 

○ Updates: In practice, a significant number of endpoints are 

designed on the go, with the frontend server-side team reaching 

out to the backend server-side team with their data requirements, 
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consequently building an endpoint for them. This introduces 

significant overhead in the software development process. Every 

design iteration on the frontend that involves a change in the 

displayed data needs to go through a process where the backend 

team is directly involved, which can render APIs brittle and error 

prone. APIs that are frequently changing are hard to maintain and 

clients will have a hard time procuring the desired data. When 

fields are removed from certain API responses without the client 

being aware of it (the client was simply not alerted and is still 

running against an older API version), there’s a high probability 

that the client’s program will crash at runtime due to missing data. 

 

Thus, although REST APIs pose significant positives, and are by far the most 

universal type of API in the world today, there exist significant drawbacks to 

implementing it at scale. Whilst these problems were less common 10-20 years 

ago, as APIs were less ubiquitous and the amount of data being transferred was 

smaller, REST’s problems are becoming increasingly serious for modern 

developers.  

GraphQL, an open-source project developed by Facebook, deals with a lot 

of these issues whilst still maintaining the strengths that made REST APIs as 

popular as they have become. After taking a further look, we hope to convince 

you that GraphQL is in fact the future of API development. 

5.4 GraphQL History and Analysis 

 

In the early 2010s, Facebook struggled to build out their mobile app [35]. 

Facebook was traditionally strong at building web-experiences, and, because of 

this, decided to display web views on mobile phones, instead of building a 

native experience tailored to this smaller, less powerful device. This caused 
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serious issues for users, as mobile phones couldn’t keep up with the bandwidth 

and network requirements to display these large web components.  

The main problem was Facebook’s News Feed implementation on mobile, as 

its web views not only required the retrieval of a post, but also significant 

additional information that needed to be constantly updated, namely comments 

and likes. Additionally, all of these Facebook posts were nested, interconnected, 

and recursive, rendering Facebook unable to handle the complexity with their 

existing APIs, due to a number of the weaknesses we mentioned above about 

REST, namely roundtrips and verbose responses. Thus, Nick Schrock, Alex 

Langenfield, Dan Schafer, and Lee Byron, four engineers working on the mobile 

team at Facebook in 2015, developed GraphQL.  

GraphQL is an open-source language for client-side applications to query 

databases. GraphQL only exposes one endpoint, from which a client can retrieve 

all of the desired information. A GraphQL request is essentially a string that, 

when sent to a server, returns JSON back to the client. These responses will take 

the same shape as the query, so clients know the shape of the data that’s returned 

from running the query, rendering it significantly easier for client-side 

developers to write queries, should client-side developers be cognizant of the 

sorts of data their application requires. 

In GraphQL, it is up to the server to grab relevant information and return it to 

the client, whereas in REST the client needs to make multiple trips to return the 

desired information. Pushing the burden of data retrieval to the server in this 

way allows the client to retrieve many resources from the server in a single 

request. GraphQL is strongly-typed [36]: it allows API users to know exactly 

what data is available and the formatting of its existence. This renders it 

significantly easier for clients to figure out how to build their queries and for 

developers to maintain the API on the backend.  

5.5 GraphQL as a ‘Fetching Tree’ 

 



35 
 

While the name GraphQL may imply that this API structure optimized for graph 

databases, this is not actually the case. GraphQL allows server-side developers to 

model the resources and processes provided by their servers as a Domain 

Specific Language. Thus, server-side developers can create a querying language 

that maps specifically to the structure of their database, and force client-side 

developers to conform to their naming conventions and structure in order to 

formulate their queries, yet simultaneously allowing client-side developers to 

execute more efficient queries. 

The best way to understand how a GraphQL query is processed is by 

abstracting away what queries generally look like. Typically, client-side 

applications are designed in the form of discrete pages, which are seeded with 

some tiny bit of data, and then perform a cascade of fetches to get the data 

needed to provide a unique user experience to the end-user. As an example, let’s 

assume that, on a client-sid web application, a profile page is ‘seeded’ with a 

user-id, and from that information the web application can reach out to multiple 

endpoints across the backend server architecture to grab the information 

necessary to populate the rest of the page. The fundamental insight in the 

development of GraphQL is that, in most cases, this contingent data fetching 

forms a tree that is more or less fixed for a given page. Data from early responses 

contain the keys for subsequent requests (such the address of my profile image in 

the REST example provided earlier), and the linkages between these requests are 

usually straightforward. As such, if the client can factor all of these disparate 

fetches into one spot, encode them as one large fetching tree, and send that 

fetching tree to the server, the client can receive all of the user’s data in request, 

eliminating the multiple roundtrips that are often needed with REST APIs, and 

consequently saving significant bandwidth and latency. Now that we have 

established this abstraction of a query as a fetching tree, let us examine how the 

fetching tree defined within GraphQL. 
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5.6 Anatomy of a GraphQL Request 

 

A GraphQL request always starts with at least one ‘root’ API operation and 

ensues with some finite number of follow-ups. These follow-ups serve as queries, 

meaning they retrieve data without changing the server in any meaningful way. 

GraphQL models all API operations as fields; these fields are split into two types: 

● Scalars: Scalars represent the individual pieces of data that the server will 

eventually deliver to the client. These are the leaves of the request tree, 

and the data stored in these leaves can be arbitrarily complex.  

● Objects: Objects are a collection of fields and serve as a junction in the 

tree.  Objects do not return any data, but route the client to the 

appropriate scalars that the client is interested in.  

The entire model for a given GraphQL API is known as its schema, and, in 

contrast to a REST API, it is strongly-typed. Every schema possesses a route 

query type, whose fields serve as the API’s entry points. An example of this is 

shown below.  

            type Query { 

               user(id: ID): User 

               image(url: Url): Image 

               # … a whole bunch more root fields 

            } 

 

            type User { 

      name: String 

      nickname: String 

      image: Image 

  } 

             

            type Image { 

                url: String 

                width: Int 

                height: Int 
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          } 

Figure 5.6.1: GraphQL Schema. 

A GraphQL query begins by mentioning at least one of the fields of the root 

query object, and the aforementioned field can be utilized to specify any follow 

up queries. It is important to note that any field in the request tree can take 

arguments, so a request can be parametrized at all depths. An example query is 

shown below: 

 

         { 

       user(id: “10”) { 

               name 

               nickname 

               image { 

                 url 

          } 

            } 

         }  

Figure 5.6.2: GraphQL Request. 

Here the client is instructing the server to look up a user by the user’s slug (the 

ID), returning specifically the user’s their name, nickname, and image URL, 

executing the entire request in one trip instead of the two this request would 

have required using REST. GraphQL achieves this improved efficiency because 

of resolvers which are worth mentioning in additional detail.  

5.7 Note on GraphQL Resolvers: 

 

In GraphQL there is only one method of information propagation: the 

propagation of context through a sequence of resolvers. While this sounds 

complex, it simply means that when a client reaches the ‘image’ object in Figure 

5.6.2 above, it understands the context that I am asking for the image associated 

with the user that has the id “10”. Every field has a resolver. For scalar fields, the 
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resolver is responsible for returning the actual data that the client sees. For object 

fields, the resolver instead returns a hidden chunk of data that is forwarded 

along to the resolvers of the fields contained in the object; these resolvers obtain 

their parent object’s hidden data, the global context, and any arguments, using 

all of these values to produce the desired return value set. 

Now that we have exhibited a GraphQL query, it is important to note that 

the response will mirror the structure of that query, as shown below:  

 

          { 

       “data” : { 

                “user” : { 

                   “name” : “Satoshi Nakamoto”, 

                   “nickname” : “Seb”, 

                   “image” : { 

                      “url” : “image_url” 

                   } 

                } 

             } 

           } 

Figure 5.7.1: GraphQL Response 

5.8 Direct Comparison 

 

Now that we understand REST GraphQL in more detail, let us compare why the 

two architectures and articulate why we believe GraphQL is better than REST for 

a majority today’s use cases, and why it will become entirely dominant in years 

to come. 

Let us model a company's API as a vending machine. With traditional REST, 

a client presses one button on the vending machine and gets one thing. So, the 

client has to press lots of buttons one at a time to get everything the developer 

needs. This process is slow. One way to solve this problem is to create special 

purpose buttons, which let the client get multiple things at once. Another way is 
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to allow the client to press a special purpose button and get a lot of information 

at once from the vending machine, but the client can’t perfectly control the 

information it receives, which can lead to you transferring more information than 

is needed in some cases, increasing bandwidth and latency. GraphQL solves the 

aforementioned inefficacies in the vending machine: vending machine that 

allows for the client to press exactly one smart button that gives the client 

everything the client wants in one go. 

GraphQL solves these issues by having a single ‘smart’ endpoint rather than 

having many ‘dumb’ endpoints. The key benefit is that smart endpoints are able 

to take complex queries and shape the data output into whatever the client 

requires. Essentially, the GraphQL layer exists between the client and data 

sources. Its job is to receive client requests and fetch the necessary data based on 

the client’s requirements. The GraphQL approach to querying addresses a wide 

range of large-scale app development problems. 

As you can imagine, GraphQL addresses most of the main weaknesses of 

REST that were mentioned previously:  

● Multiple Round Trip (Latency): Now that the client can push complex 

queries to the server, and have it return all of the client’s desired 

information in one go, round-trips are an item of the past.  

● Verbose: With GraphQL the client only gets back the information the 

client requested, no more irrelevant information.  

● Security with Multiple Endpoints: With GraphQL, the server only has 

one endpoint to protect, rendering a significantly easier task for  back-end 

security efforts.  

● Documentation: Given that GraphQL is strongly typed, it’s a lot easier to 

automate the creation of documentation; there are a number of services 

that will do this for back-end developers. There are also great dashboards 

that back-end developers can use to experiment with different queries and 

see how the queries will be responded to by the back-end server. 
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● Updates: Additional fields can easily be added to the server, i.e. adding 

new product features or deprecating older features, without affecting 

existing clients. In this way, GraphQL brings about a backward-

compatible process that eliminates the need for incrementing version 

numbers, simplifying versioning in general. 

This is in fact one of the most valuable aspects of GraphQL - it doesn’t lose 

any of the functionality that made REST so great, whilst improving on a lot of its 

weaknesses. It is a rare example of a net additive to a widely adopted system, 

why it has gained popularity so quickly.  

It is also fairly easy to convert from an existing REST API to a GraphQL API, 

and given the low switching cost and explosion of managed tools to help 

maintain a GraphQL system, the choice to migrate is only going to get easier.  

All this being said, GraphQL is far from a perfect system. In fact, similarly to 

Kubernetes [37], the reason it provides so many distinct benefits is because it is a 

significantly more complex system than REST.  

5.9 Weaknesses of GraphQL 

 

GraphQL has been optimized for modern systems, companies that are embracing 

future-facing architectures. The world is moving towards microservices, which 

means that they are breaking their large applications into independent 

components that communicate with one another via APIs [38]. As we have 

discussed, REST struggles to scale, a deal-breaker when it comes to 

microservices. By the nature of this decoupled architecture, there exist 

significantly more API calls being made, and a lot more updates being made to 

data schemas in the back-end, which are actions that REST struggles with 

significantly.  

As such, it is important to understand where GraphQL faces issues when 

serving a microservice architecture, as for more trivial use-cases it may be over-

engineered: 

https://www.prisma.io/blog/how-to-wrap-a-rest-api-with-graphql-8bf3fb17547d
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● Schema Design:  

○ In a microservice architecture, like all multi-service architectures, 

each service exposes a certain amount of information about the 

back-end system, and there are multiple services working in 

tandem to run your application. To embrace the powers of 

GraphQL, back-end developers need to stitch all of these services 

together under a unified schema, which can cause issues around 

duplication of resources, and conflicting fields between resources.  

○ One solution here is Prefixing, where the back-end developer adds 

a prefix to each of the broadcasted microservices, such the 

microservices are all logically separated. This adds a layer of 

abstraction that actually detracts from the centralized promise of 

GraphQL, as each service is treated as an island, meaning it 

becomes impossible to concatenate resource relationships across 

services. The benefits are that this is very easy to implement. 

 

 
Figure 5.9.1: GraphQL Schema Prefixing. 
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○ Another solution, which is the official recommendation of 

GraphQL, takes the form of Bonding, where the back-end 

developer glues the different GraphQL Schemas from each 

microservice into a uniform interface. In the past, this required 

developers to manually stitch schemas together, which adds a 

serious amount of complexity, but the recent launch of Apollo 

Federation is a significant step in reducing the complexity of this 

approach [39]. As such, the community is moving towards 

solutions that are able to get information from multiple services 

whilst staying true to the GraphQL methodology. 

 

       
Figure 5.9.2: GraphQL Schema Stitching. 

 

 

● Certification and Authorization:  

○ GraphQL renders a multi-tiered service as we’ve seen above. On 

the top level exists the GraphQL server itself, which takes the 



43 
 

request from the client and handles the response. Beneath the top 

level exists the middle tier, which handles communication from the 

GraphQL server to the various microservices, and the data tier 

from which the microservices get data to push back up to the 

GraphQL server.  

○ As such, for authorization developers can choose to decide whether 

a user has permission to operate on a certain resource at the 

GraphQL server level, or the microservice level, and the answer to 

this problem culminates as a trade-off between a centralized and 

distributed architecture. This is actually a trickier problem than 

developers might anticipate. Let’s assume that all the authorization 

is done at the GraphQL server level; this would mean that the 

services fully trust the call of other services, which can lead to 

vulnerabilities. On the other hand, if authorization is left as a 

service level decision, then each service needs its own logic and 

will need to provide different interfaces to different GraphQL 

requests, which adds complexity. In principle, companies need to 

define a hybrid approach in which secondary checks are made at 

the micro-service level for certain requests, but, as exhibited, this is 

not a simple thing to think through and set up.  

● Routing Design: 

○ When a request comes in, the GraphQL server is responsible for 

routing that request to the correct services from which it can get the 

information. If the server possesses a single backend service this is 

very easy, as it will have access to all the information, but if that’s 

not the case (as is typical of large microservice deployments), then 

routing the requests efficiently becomes a problem.  

○ GraphQL schema stitching is actually a solution here, as it will 

implicitly route request fragments to the appropriate microservices 

through the various resolvers that were updated in order to stitch 
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the service schemas together. In this case, no manual intervention is 

required, unless there exists a conflict in the schema type (i.e an 

update has been made to the data model in the relevant 

microservice). There exist some nice properties of GraphQL that 

can help here, like the fact that developers can define the expected 

time it will take for a request to execute, so the server has an idea of 

how to prioritize effectively, but solving this problem requires 

significant manual effort. Handling the routing of requests is a 

fundamental problem that needs to be addressed in every 

GraphQL system, and it is far from simple to handle a large 

amount of concurrent requests to various services in a reliable and 

efficient way.  

● Error Handling:  

○ With a typical REST query, the response given will typically 

describe the outcome of the request. For example, if the request 

succeeds, the client will receive a code 200; if the resource couldn’t 

be found, the client will receive a code 404. In GraphQL, this isn’t 

the case; clients will always receive a code 200 meaning the query 

returned successfully, and any information about errors will be 

wrapped in the return object. This means client-side developers 

must write custom logic for error handling that can be tedious and 

add complexity to the overall system.  

 

Thus, despite the benefits of GraphQL, there exist significant issues that 

developers face when implementing it in production. However, we believe this 

friction is true of any new technology seeking to fully disrupt a market, and no 

aspect of GraphQL’s design seems to be a fundamental limiter of its potential 

success. It is able to deal with a more complex set of use-cases because it is more 

complex, and, as with Kubernetes, it may take additional time before a user-

friendly version of GraphQL is available to use broadly against a microservice 
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architecture, but, once it does, it will dominate the market. It is our belief that 

GraphQL is perfectly positioned to capitalize on the architecture of the future, 

and that as the world moves to cloud and microservice architectures, GraphQL 

rise to dominate the API ecosystem. However, REST is still the leading solution 

and so must be accounted for as such. 
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