
1

A Decentralized, Scalable Read-Write Solution for Blockchains

 Calvin Pak Andrew Bakst

 API Foundation API Foundation

 calvin@theapis.io andrew@theapis.io

October 5, 2020

Abstract

We propose APIS, a middleware protocol for the functioning of a decentralized read-

write protocol, allowing for the mainstream growth of a fully decentralized finance and

decentralized web architecture. Current data index and querying solutions are either

centrally architected, reliant on a party who at all times is subject to numerous performance

and regulatory risks, or logically decentralized, thus requiring an in-depth knowledge of the

public blockchain protocol layer and obscuring the majority of global developers from

interacting with public blockchain infrastructure. APIS is architecturally decentralized, in

that the providers of the endpointed data can be any actor joins the APIS network, but

logically centralized, in that client-side developers will be able to reference common,

frequented API formatting structures, namely RESTful and GraphQL endpoints, to query

datasets generated by public blockchains.

2

Tables of Contents

1 Background ... 3

1.1 Background ... 3

1.2 Introduction .. 4

2 Architecture .. 7

2.1 Message Propagation Protocol ... 7

2.3 APIS Core Contracts .. 10

2.4 Governance Contract (GC) .. 12

2.5 Dispute Resolution Contract (DRC) Factory .. 12

2.6 Optimistic Rollup Contract .. 16

3 Applications .. 19

3.1 IDs.. 20

3.2 API Token .. 21

3.3 Token Distribution, Community Ownership ... 22

4 Discussion ... 24

5 Appendix: Analysis of REST versus GraphQL ... 24

5.1 REST History and Analysis ... 24

5.2 REST APIs in Practice: .. 28

5.3 Strengths and Weaknesses of REST: ... 30

5.4 GraphQL History and Analysis... 33

5.5 GraphQL as a ‘Fetching Tree’ .. 34

5.6 Anatomy of a GraphQL Request ... 36

5.7 Note on GraphQL Resolvers: ... 37

5.8 Direct Comparison .. 38

5.9 Weaknesses of GraphQL ... 40

6 Bibliography .. 46

3

1 Background

1.1 Background

Public blockchain architectures have allowed for the next iteration of the internet:

the decentralization of digital applications. Decentralized, digital applications are

currently categorized in two subsequent groups: decentralized finance and the

decentralized web.

Decentralized finance has achieved significantly more adoption than

decentralized web, for a variety of factors, although the most significant is the

difference in computational overhead required to create a contemporary user

experience: the computation of money or money-like instruments is primarily

dependent on floating-point arithmetic, computationally light to conduct in

contrast to the algorithms required for the par-functioning of web applications

reliant on ‘news feeds’, ‘matching algorithms’, and ‘product recommendations’.

Consequently, decentralized finance can achieve private scalability at the same

throughput as international payment networks, such as SWIFT [1], today and

promises to achieve private scalability on par with modern domestic payment

networks, such as VISA, in the near future. Decentralized finance will continue to

subsume additional financial applications beyond payments, namely investing,

trading, lending, and savings. These four use cases have begun to show

meaningful growth as decentralized finance continue to scale.

The decentralized web is further from mainstream adoption: we approximate

that popular decentralized web protocols today are three to five years behind

their decentralized finance counterparts in terms of privacy and performance.

While decentralized finance can leverage zero-knowledge-proofs to achieve

private scalability, and the rate of zero-knowledge proof improvement has been

exponential [2], the decentralized web is dependent on technology still further in

4

its infancy, namely secure multi-party-computation (sMPC) and fully

homomorphic encryption (FHE) [3]. As these cryptography technologies

continue to scale in the same way that zero-knowledge proofs have over the last

five years, the decentralized web will be able to reach the same adoption as

decentralized finance.

However, so long as there exists any degree of centralization of decentralized

financial and web products, the entire system is at risk. API’s Law states that: “A

product is only as decentralized as its most centralized component.” We present

APIS in order to realize a vision of decentralized finance and web, without any

platform risk that would be subjugated to local regulations, specifically those in

regimes that currently control the global regime and so are incentivized to

mitigate disruption. The most centralized component of the decentralized

finance and decentralized web stacks are the data index and querying layer, a

mission-critical component without which decentralized applications would not

be able to achieve mainstream adoption. Thus, APIS allows for decentralized

finance and web products to permeate the world while maintaining the security

properties of a fully decentralized web architecture.

1.2 Introduction

Current public blockchains (such as Ethereum and Filecoin) were launched as

maximally decentralized, but quickly became re-centralized around elements

that solved user pain points. The most prominent centralization success has been

centralized exchanges, although the exponential adoption of decentralized

exchanges renders that this centralized feature of public blockchain systems

(centralized exchanges) will soon become decentralized [4].

Thus, after exchanges, we turn towards what will now become the largest, most

mission-critical, yet still centralized feature of the public blockchain design space:

5

the database layer, herein also referred to as the query layer. The query layer is

mission-critical for all decentralized applications.

Figure 1.2.1: Current Decentralized Application Architecture.

End-user client applications typically interact with a public blockchain through

the following process: a transaction is signed by the user’s private key [5] via a

client-side light client [6] and subsequently propagated by a full node, whose

uptime is promised by the application itself or a third-party service provider, to

additional full nodes, including validators of the public blockchain, who then

compute the result of that transaction and package both the transaction and its

results into their ensuing block, should the fee paid to the validator incentivize

them to choose that transaction over additional transactions. The process of

sending a transaction is herein referred to as writing to the blockchain. The most

6

significant barrier of writing to the blockchain is the optimization of the

transaction fee paid to the network [7], as variant fees for transaction inclusion

exist for frequently used blockchains, which manifests itself in either failed

transactions [8] or over-paid transactions [9], both of which perpetuate the poor

user experiences that public blockchains are known for.

Across all public blockchain virtual machines of mainstream usage, writing to

the blockchain generates events and logs [10] that exist as a result of transactions

and the interactions with smart contracts; events and logs serve the primary

purpose of the generation of return values for decentralized application user

interfaces. However, the management of events and logs and their resultant

states emitted from smart contracts is a time-intensive, computationally heavy

process, for which the overwhelming a majority of developers do not possess

resources to execute. Smart contract and decentralized application developers are

best suited optimizing for the secure execution of their contracts, as well as

finding product-market fit for those products. The market for specialized index

and query services has grown at an exponential pace [11], but the market leaders

are centralized service providers, whose operators and shareholders are subject

to the regulation of the states in which they operate. These index and query

service leaders are incentivized to form monopolies to extract excess fees and

profits, ultimately passing the cost to users and developers at large.

Decentralized applications reliant on centralized service providers are subject to

gatekeeper and platform risk that can create an unfavorable developer

experience. For any consumer application, all it requires is one poor user

experience for a user to never trust a product again [12]. All of a developer’s

work can be destroyed overnight.

APIS provides a protocol for the decentralization of index and query services for

reading data from and writing data to the blockchain, which will include gas

optimization indices to help developers and users write to the blockchain as

7

efficiently as possible, thus ensuring a fully decentralized architecture for the

decentralized web, its builders, and its users.

2 Architecture

APIS achieves its decentralized query and index architecture through the

utilization of a publish-subscribe message propagation protocol [13], on which is

overlayed an incentive-driven, decentralized organization enabled by the

Ethereum public blockchain and a customized layer-two system whose

characteristics exhibit that of an optimistic rollup [14].

2.1 Message Propagation Protocol

The APIS Network is composed of two actors, both of which are open and

configurable by any party: APIS Gateways and APIS Nodes. Queries requested

by decentralized applications and their developers are responded to by APIS

Gateways, while APIS Nodes index and manage databases pertaining to one or a

group of smart contracts, such that APIS Nodes can respond to APIS Gateway

requests with an average response time of 400ms (ϵ(t) < 400ms), under the

condition that the requested endpoint from the APIS Gateway is already

maintained by an APIS Node.

Figure 2.1.1: APIS Network Message Propagation Protocol.

8

Communication between Gateways and Nodes is maintained through a

brokerless, libp2p publish-subscribe messaging protocol, wherein Nodes

subscribe to messages from a Gateway, which they can receive directly from the

Gateway or from additional Nodes who also have also subscribed to that

Gateway’s messaging propagation, although Nodes should assume counterparty

Nodes are adversarial at all times, per any well-designed crypto-economic

system.

Gateways maintains a registry of the subscribing Nodes from which they request

endpoints based on the <ID> of the endpoint, as Nodes will only index a select

group of IDs. IDs are representational hashes of the datasets supported by the

Network; only the hash of the ID is maintained on-chain in the Node and

Gateway State Tries, described further in 2.6 Optimistic Rollup Contract. It is up to

each Gateway to determine how to filter messages from Nodes for each endpoint

response, although we recommend a first-in, first-out approach, wherein

subsequent messages, should they differ from the first sent message, can provide

the Gateway with evidence warranting of initiating a challenge, described

further in 2.5 Dispute Resolution Contract Factory.

 2.2 Message Formatting Overview

Queries are sent by client-side applications directly to Gateways and returned by

Gateways in industry standard GraphQL and REST formatting, thus allowing for

the adoption of APIS by a global developer pool and consequently expanding the

developer market of public blockchains. GraphQL and RESTful differentiate

themselves in how they manage and return queries: GraphQL provides a single

endpoint for the requested data, while REST provides multiple endpoints, which

renders REST less efficient but also more customizable. REST has achieved more

significant mainstream adoption than GraphQL due to its first-mover advantage

and consequent well-known integrations; however, GraphQL can tailor its query

9

responses to exactly what the query is requesting, thus ensuring that there is no

overfetching of data and that the application only receives the data that it needs

with one, unilateral mode of communication. We believe that GraphQL will

ultimately overtake REST, but to encourage adoption by as many engineers as

possible, APIS Gateways will support both API formats for the foreseeable

future.

To maintain optimal communication between APIS Nodes and Gateways, APIS

Nodes will only support RESTful requests at launch, as RESTful requests can be

packaged by APIS Gateways into GraphQL format, through the APIS RG

Converter, a proprietary but open-sourced technology that builds on the well-

known stitching [15] and prefixing [16] techniques implemented in past

conversation schemes. Thus, Gateways allows for the APIS network to support

both types of queries by clients, while mitigating the operational intensity

required to run an APIS Node. The APIS RG Converter can transform RESTful

endpoint into a GraphQL endpoint (and vice-versa) in under 100ms (ϵ < 100ms),

with an approximate success time of 95ms.

Figure 2.2.1: APIS RG Conversion Time across internal practical tests.

10

95ms, when added to the 400ms roundtrip estimation of message

communication, renders a query to be returned in 500ms or less (ϵ < 500ms). The

performance of the network will scale as the network scales, as Gateways and

Nodes alike will compete with return queries under the fastest possible

conditions, such as to win third-party client developer business. This is a long-

term economic benefit of a protocol over a centralized aggregrator, who can

afford to innovate at a slower rate due to monopolistic market practices.

However, in the interim, it is estimated that sub-500ms return times are adequate

for decentralized finance and web user experiences.

2.3 APIS Core Contracts

APIS Gateways and Nodes act under rational economic incentives, enlisting their

services for fees in an environment assumed to be perpetually adversarial. The

state of the APIS Network is maintained by the APIS smart contract and layer-

two rollup architecture, deployed on the Ethereum public blockchain.

11

Figure 2.3.1: APIS Network Ethereum Layer-One and Layer-Two Architecture.

The three primary contracts deployed on the Ethereum public blockchain are the

governance contract, the dispute resolution factory contract, and the optimistic

rollup contract. The governance contract allows for the configuration and

upgrade of the rest of the architecture; the dispute resolution contract factory

ensures that APIS Gateways and Nodes are incentivizes to only complete

accurate responses; the optimistic rollup contract allows the architecture to scale

significantly beyond the throughput of the current Ethereum public blockchain.

Throughout the entire design, the concept of superfluidity is emphasized with

regards to the API token, such that the holder of the token can participate in

governance, dispute resolution, and optimistic rollup validation simultaneously,

maximizing the potential revenue generation to API token holders.

12

2.4 Governance Contract (GC)

APIS is upgraded and configured by the decentralized group of API token

holders, thus driving the Governance Contract (GC) to be the most important

object in the design. The GC is a customized fork from the open-sourced

Compound Governance Contract, which has proven to be the most

comprehensive, well-audited governance module in the Ethereum ecosystem, as

exhibited by its redeployment by other notable layer-two protocols, such as

yearn.finance [17]. The purpose of the GC is to allow API token holders to

upgrade the APIS Dispute Resolution Factory Contract and the APIS Optimistic

Rollup Contract, as well as to implement additional smart contracts into the APIS

protocol. API token holders can vote directly or delegate their votes to trusted

counterparties; all votes require that the tokens remain locked in the GC for time

= 1.504 days (10,000 Ethereum mainnet blocks) after the quorum is reached and

the vote is finalized, to disincentivize malicious parties from purchasing API

tokens to pass APIS Improvement Proposals (APiiPs) that negatively affect the

APIS Network. The quorum required to approve an APiiP will be 25% of the

network, although we hope that future APiiPs will vote to raise the quorum

requirement as the project becomes increasingly decentralized through the API

Liquidity Mining Program, as illustrated further in 3.3 Community Ownership.

2.5 Dispute Resolution Contract (DRC) Factory

The APIS Dispute Resolution Contract (DRC) Factory was initially designed as a

function within the Governance Contract, but was later separated into its own

contract to ensure complete modularity, allowing for upgrades to the DRC when

a less subjective resolution mechanism is able to be deployed, which should be

the case as zero-knowledge-proofs continue to scale. The purpose of the DRC

Factory is to allow API holders to vote specifically on events that have happened

off-chain, namely whether a Node or Gateway provided a fraudulent or

13

misrepresented endpoint, either to another Gateway or end-user client. API

tokens staked in the GC can be used to stake in the DRC (and in the Optimistic

Rollup Contract, as described in 2.6) simultaneously, although requiring the signing

of an additional transaction on the Ethereum mainnet.

The DRC Factory utilizes customized, stake-driven voting functions, namely a

<challenge> function and a <defend> function through which an API token

holder signals their vote with the staking of their API tokens. The Factory merges

these functions with simple opcodes, namely CREATE2, to allow anyone to

deploy a Dispute Resolution Sub-contract (DRS), whose address and state is

stored in the DRC Factory as a key-value mapping; a DRS can either have one of

two states in the DRC Factory contract: <True> or <False>. In light of due process,

all DRS are defaulted as <False>.

Figure 2.5.1: DRC Factory Simplified Architecture.

All DRSs have 7.52 days (50,000 Ethereum mainnet blocks) to resolve itself, after

which, if still unresolved, the entire system forks into two separate universes, in

a design very similar to Augur’s stale-state solution [18]. At that point, API token

14

holders must decide which fork of the network to recognize as canonical, based

on what they believe the proper Dispute Resolution Outcome should be.

A DRS’s only purpose is to resolve whether a transaction from the Optimistic

Rollup Contract (ORC) as either <True> or <False>. To conduct a knowledgeable

vote, API holders must be aware of the endpoint that was sent either from the

Gateway to the User or the Node to the Gateway. Thus, every Payment

Transaction in the Optimistic Rollup Contract has the structure: <Client Account

Address, Client Account Signature, Server Account Address, Server Account

Signature, Transaction Amount, Endpoint Hash, Nonce>, where the Client is the

Payer (either an End-user Client or Gateway) and the Server is the Payee (either a

Gateway or Node).

 {

 struct PaymentTransaction {

 address client;

 signature client;

 address server;

 signature server;

 uint amount;

 string[] endpoint;

 uint nonce;

 }

 }

 }

Figure 2.5.2: Customized Payment Transaction Structure

The Endpoint Hash provides the canonical truth of what the delivered endpoint,

such that voters of a DRS can simply check the result of their Endpoint Hash of

the requested endpoint against the Endpoint Hash in the transaction that has

been challenged. If the voter’s Endpoint Hash matches that of the transaction, the

voter will vote that the transaction was <True> and consequently that DRS is

15

<False>; if the voter’s Endpoint Hash does not match that of the transaction, the

voter will vote that the transaction was <False> and consequently that the DRS is

<True>.

In order to generate the Endpoint Hash, the voter must have access to the

Endpoint that was sent to the requester. To achieve this, all APIS Nodes and

Gateways default to store transmitted Endpoints for 7.52 days (50,000 Ethereum

mainnet blocks), after which Nodes and Gateways can prune the full Endpoint

data from their storage. Full Endpoint data (the Endpoint Hash represents this

data) consists of: <ID>, a hash representation of the dataset from which the API

was called; <DataType>, with two possible returns of GraphQL or REST;

<MessageInputs>, the specific variables that were requested in the API call; and

<MessageOutputs>, the specific responses to the variables that were requested,

with both <MessageInputs> and <MessageOuputs> strored in equal size arrays,

such that they can be counter-checked. Because of the blockchain’s inability to

objectively verify whether a <MessageOutput> was the correct response to the

<MessageInput>, dispute resolution is a subjective process, but with clear on-chain

references to use as canons. If a DRS is settled as <True>, the server party (APIS

Node or Gateway) that had been paid for the API request will have their API

stake slashed, at a ratio of:

𝑘 ∗ ∑ 𝑥(
𝑧

𝑦
)

𝑛

𝑖=1
,

where x is their API tokens at stake, y is the time that their API stake has been

locked in the Optimistic Rollup Contract (see 2.6 below), z is the number of offences

that have been generated since that stake was deposited (starts to 1, increases by

1 every false offense, which will be recognizable both in the Node and Gateway

State Tries in the ORC), and k = 0.326. Payments are not rolled back in the case of

proven fraud by a Node or Gateway; instead, the slashed stake is distributed at

the ratio of 10-90 between the client that was frauded and the group of parties

that voted correctly, proportionate to the size of their vote. It requires a

minimum stake of 1,000 API tokens to act as a Node or Gateway, although we

16

believe that the most used Nodes and Gateways will have staked a significantly

higher amount of API, as the more API at stake, the more trustworthy they will

be, the more usage they will obtain.

If a challenge itself is fraudulent, and not the API request, the challenger will

have their stake slashed: it requires a stake of 500 API tokens to initiate a

challenge, to mitigate spam. While this may incur friction for people wishing to

challenge, obtaining 500 API tokens is feasible due to its exchange liquidity, and

the upside from a correct challenge is designed to exceed the gas costs by at least

ten-fold. If a challenger is wrong, their stake is distributed at a ratio of 10/90 to

the party who enacted the correct API request and the group of parties that voted

correctly, proportionate to the size of their vote.

In order to challenge a challenge, a group of parties must stake at least one-and-

a-half times the amount of funds currently staked on the other side of the vote,

within 18.1 hours of the last challenge (5,000 Ethereum mainnet blocks). If the

DRS is not resolved after 7.52 days (50,000 Ethereum mainnet blocks), the system

forks, with individual users deciding which fork to support. The goal of forking

is to encourage faster resolution, as it is likely the market will converge upon one

of the forks at a least a 90-10 ratio, as is common with most public blockchain

protocol forks.

2.6 Optimistic Rollup Contract

The Optimistic Rollup Contract (ORC) holds the Node State, the Gateway State,

the Transaction State, and the Account State. The Account State is most frequent

across all account-based optimistic rollups, what will continue to be the status

quo in transaction execution for both mainchains and rollups, despite the recent

popularity in UTXO-based optimistic rollups [19]. All states are represented on

the Ethereum mainchain as hashes of their corresponding Patricia Merkle Trie

17

[20]. The Node and Gateway Tries are of depth 14, allowing for 214(1.6 ∗ 104)

Nodes and Gateways, with the ability for the depth size to be increased in the

future via an APiiP. The Account State is of depth 22, allowing 222(4.2 ∗

106) accounts (which sums to the Users, Gateways, and Nodes), with the ability

for depth size to be increased in the future via an APiiP. The Transaction State

Trie is of depth 40, allowing for 240(1.1 ∗ 1012) transactions, with transactions

that have been processed and not challenged either in the DRC Factor or the

ORC for 50,000 blocks (7.52 days) pruned and removed from the Transaction

Trie. Transactions pruned from Trie can be maintained by Nodes and Gateways

for longer if desired, although there is no reason to hold them via the incentives

of the APIS protocol.

The Transaction Trie has three sub-Tries, of which referenced prior has only been

the Payment Trie. In addition to the Payment Trie, a Node Update Trie and Gateway

Update Trie have been implemented to allow for the customized updating of the

Node State and Gateway State Tries. Both Node and Gateway Transactions

contains identical structures, with the primary purpose of allowing Nodes and

Gateways to increase or decrease their API at stake, which, to be valid, must

already have been deposited into the ORC via a standard smart contract deposit

transaction on the Ethereum mainnet: <Node/Gateway Address, Node/Gateway

Signature, Node/Gateway Staked Deposit (negative integers are allowed, with a

check that the Account Stake as listed in the Node/Gateway State Trie is greater

than or equal to the withdrawal amount), ID hash (the hash of all IDs currently

supported by that Node or Gateway), Nonce>.

 {

 struct NodeUpdateTransaction {

 address node;

 signature node;

 int change;

 string identity;

18

 uint nonce;

 }

 }

 }

Figure 2.6.1: Customized Node State Update Transaction Field.

The ORC also contains the Optimism Fraud Proof’s standard public functions,

which allow for fraudulent state updates to be challenged and resolved without

requiring interaction other than the initiated challenge itself [21]. It should be

noted for emphasis that DRC and ORC fraud proofs are distinct processes (The

DCR is highly interactive, due to the subjectivity over the truthfulness of the

items being disputed, whereas the ORC will become highly objective overtime,

due to the usage of the Ethereum mainchain as a data storage layer.). ORC

Fraud Proofs rely on data availability, namely that all state updates have

corresponding transactions readily available on the Ethereum mainnet, primarily

stored as call data [22].

To ensure data availability while maintain scalability, a pruned-version of

transaction information that is included in the Transaction Trie is stored as call

data on the Ethereum mainchain: <TrieID (a reference to one of the three

transaction tries), TransactionHash (a hash representation of the transaction)>,

where the Trie ID is 4 bytes and the Transaction Hash is 32 bytes, such that each

transaction only uses 36 bytes of call data. A standard Ethereum transaction is

247 bytes [23] and requires 21,000 gas because of its use of the Ethereum State

Trie; APIS’s optimistic rollup architecture has effectively batched transactions at

a ratio of 125:1, thus allowing for 1,875 transactions per second, or 1,875 API calls

per second, compared to the Ethereum mainnet’s current throughput of 15

transactions per second.

If an ORC state update is found to be fraudulent, the validator’s bonded APX

tokens are slashed and distributed to the party that found and report the

19

fraudulent block transition. Any party can submit an APIS ORC block to the

blockchain so long as they have bonded 10,000 API tokens bonded in the ORC

contract. Like the DRC Factory, tokens staked in the APIS GC can be staked in

the ORC as a validator, per the system’s design requirement of superfluidity.

If our optimistic rollup design cannot scale to meet demand, we will transition to

a zero-knowledge rollup design, leveraging either a modified version of zkSync

or Validium, depending on scaling requirements required by user demand [24].

3 Applications

The Applications of the APIS network are twofold: to create better end-user

experiences and to create better developer experiences. For end-users, APIS

allows developers to seamless integrate features with guaranteed 100% uptime,

censorship resistance, and near-zero platform risk. While the uptime and

censorship resistance features of a decentralized network has been discussed

thoroughly by the public blockchain community, we believe that platform risk

remains under-discussed. Developers who utilize the APIS network for their

decentralized applications will never be upcharged by a monopolistic, profit-

seeking company, as protocols create markets, not monopolies [25]. The platform

risk view can be further substantiated by Metamask’s recent change in open-

source licensing, leaving developers to question whether a Metamask integration

will require fees in the future [26]. APIS already supports all queries and indexes

of Ethereum through the aggregation of APIS’s centralized competitors, and

shortly thereafter will support IPFS and Filecoin due to its growing popularity.

Additionally, any additional blockchains can be added to the APIS index and

query protocol, should an ID for that blockchain be created by an APIS Gateway

or Node.

20

3.1 IDs

Ethereum and IPFS both contain terabytes of data that could be indexed and

queried, with their datasets growing daily. Thus, APIS introduces the concept of

IDs, such that only relevant datasets to the APIS’s clients are indexed by APIS

Gateways and Nodes. IDs are standardized references to specific Ethereum

smart contracts or IPFS hashes that developers wish to index. APIS Gateways

and Nodes are incentivized to index all IDs that developers and users find

relevant; thus, APIS already supports all notable decentralized finance IDs of

notable volume, such that datasets from any automated market maker,

decentralized exchange, on-chain lender, and on-chain aggregator can be

queried.

IDs are to be requested and added through off-chain proposals on the APIS

Governance Module, separate from the on-chain APIS Governance Contract.

Once an ID is requested, Gateways and Nodes signal their support by

conducting a Gateway or Node transaction in the ORC, adding the ID to their

registry. The transaction acts of proof of their support of the ID, which allows for

Gateways and Nodes to search for each other to offer more complete datasets,

without needing to know each other prior. This allows for the network to become

more decentralized, as Nodes and Gateway can employ a standard internal,

private reputation system of their connections based on uptime and API tokens

at stake, with initial communication driven by a desire to include additional IDs

into their service offering. Additionally, the Dispute Resolution Contract (DRC)

protocol references IDs in each dispute, such that API token holders can be fully

knowledgeable of the matter of dispute.

21

3.2 API Token

As referenced prior, the API token is designed to be superfluid, utilized for on-

chain governance, dispute resolution staking, and optimistic rollup validating

simultaneously. Thus, those that own or earn API tokens maintain a voice over

the entire APIS protocol, earning fees for their actions. Because a majority of

tokens today are unmined, API tokens will be distributed via a usage mining

program derived the usage of the protocol itself, namely through fees paid, as

money is the most objective measure usage.

APIS users tend to be technically competent developers, who then can vote on

APiiPs, resolve disputes, and deploy their own APIS Nodes or Gateways. It is

imperative that all APIS actors who could harm the network have API at stake,

due to the well-researched nothing-at-stake problem set [27].

22

Figure 3.2.1: Superfluid API Composition.

3.3 Token Distribution, Community Ownership

In the ORC State Trie, the Liquidity Mining Account (LMA) will be publicly

noted. The LMA will distribute API tokens once per week, similar to Synthetix’s

model. The Account is currently controlled via a nine-person multi-sig, overseen

by the APSs Council, although the Council will eventually be removed and

replace it with the APIS Governance Contract, such that API token holders can

vote each week whether the supply is increased or not. This allows API holders

23

to prevent future inflation, should they believe it is no longer needed, as market-

blind liquidity mining, as most projects have implemented [28], has proven to be

less optimal than market-aware liquidity mining, as exemplified by yearn.finance

[29].

As referenced prior, API Liquidity Mining is achieved through usage, not the

liquidity of the APIS platform itself. While many protocols have opted to

incentivize the trading and lending of their token, the APIS network is best

suited incentivizing API queries and API calls, rewarding those who use the

protocol for its intended purpose, paying and receiving fees for the service that

the network provides (demand side and supply side). Third-party client

developers and APIS Nodes & Gateways will receive a monthly payout

according the following function:

𝑇 ∗ ∑(
𝑖=1

𝑛
F

𝑇𝐹) ⁄

where F is fees paid by each third-party developer to each Node or Gateway, TF

is the total amount of fees paid on the network, and T is the amount of tokens

allocated to the program by the network for that month. We have considered

taking the sum of the square root of fees paid to disincentive wash-trading and

instead to encourage the usage by third-party developers of a wide variety of

Gateways and Nodes, incentivizing maximal decentralization of the network.

However, we will leave this decision to a community vote. T is currently a

variable number of API per month, following an S-Curve that aligns with a two-

year adoption cycle, and will be released online shortly, but may be altered based

on the APIS community’s vote at large once the governance module passes a

proposal removing the power from the Council and placing it to the APIS

community via an APiiP.

24

4 Discussion

In this paper, we have presented a scalable, decentralized protocol for the

indexing and querying of datasets inherent to public blockchains. The protocol is

based on knowledge of REST and GraphQL message formatting and

optimization, consequently ensuring that developers can obtain data from

Ethereum, Filecoin, and all other relevant blockchains with uptime guarantees,

hyper-competitive market pricing, and in formats that mainstream developers

have vast experience integrating with already. The protocol is composed of two

groups: Gateways and Nodes, although a Gateway can be a Node and vice-versa.

The purpose of the dual infrastructure is to allow developers to select receive

endpoints as quickly as possible, while ensuring that both the providers of

endpoints are incentivized to act in the best interest of the APIS Network. The

APIS Network is community governed, with governance primarily focused on

the Dispute Resolution Contract, which has been influenced by the Augur

project’s approach to subjective oracle design, and the Optimistic Rollup

Contract, which has been influenced by the work of Optimism. Lastly, to

encourage maximal community ownership and corresponding decentralization,

users of APIS will receive API tokens proportionate to their usage, with a system

designed to mitigate wash-trading and encouraging further decentralization of

Nodes and Gateways. The remaining of the paper is dedicated to an analysis and

overview of REST and GraphQL APIs, namely how each standard functions and

the tradeoffs therein.

5 Appendix: Analysis of REST versus GraphQL

5.1 REST History and Analysis

Representational State Transfer (REST) [30] is a software architectural style that

defines much of how information is currently transferred between previous

25

unconnected, distinct web applications. REST APIs now compose approximately

71% of the global API market share [31], foot-holding as the foundation upon

which many of the world’s most popular web services are serviced to consumers

by developers.

Any web application that deploys a REST architecture for API interaction,

and in doing so become known as RESTful, must comply with five guiding

constraints. These constraints restrict the ways that a server can process and

respond to client query requests, but, in doing so, provide websites a number of

desirable properties with regards to efficiency, scalability, and simplicity. The

constraints are as follows:

● Client-Server Architecture: The basic principle of client-server

architecture is that there exists a clear separation between the data queried

and the user-interface that the data provider typically utilizes to represent

that data. To provide a concrete example, a Facebook API should not

explicitly mirror Facebook’s own front-end interface. Thus, third-party

developers who query a Facebook API should not be forced to interact

with, for example, a Facebook ‘profile page’ endpoint but rather

information about a ‘user,’ which the third-party developer can then

utilize in their web application’s distinct user-interface.

● Statelessness: No data that has been queried should be stored on the

server in-between requests, such that servicing any additional query

possesses a marginal cost of zero to the data provider. As such, every

request made by a client developer must contain all the information

necessary for the server to service that request.

● Cacheability: Clients are able to cache responses. Caching means ‘store

for later,’ which renders that the client can avoid asking a server for

information if the client has already asked for it earlier. For example, if I

request someone’s Facebook profile through the Facebook API, I can cache

that information so that I don’t need to request it the next time I need it.

26

● Layered Architecture: A client should not ordinarily be able to tell

whether the client is connected directly to the provider’s end-server [32]

or an intermediary server that exists between the end-server and the

client. For example, if server-side web application utilizes a load balancer,

a technology that allows developers to distribute requests across multiple

servers such that no single server becomes inundated, the client

requesting data from that web application should still continue fully

performant communication with the layer of the server architecture

providing the response, not requiring any additional code by the client or

server architecture.

● Uniform Interface: A uniform interface is, per third-party developer

experiences, the most significant element of REST, distinguishing it from

competing architectural styles. A uniform interface decouples a web

application’s interface from its implementation, meaning that regardless

what a web application does, developers can interact with its API in the

same way. Thus, developers can interact with all of their provided REST

APIs in exactly the same way, even if the information they are retrieving is

entirely distinct. REST achieves this highly desirable malleability due to

four constraints:

○ Identification of Resources: The REST style differs from preceding

APIs because it is centered around resources as opposed to methods

or procedures. These resources can effectively take any form (be it a

static picture or a feed of real-time stock prices), but they usually

represent entities from the business domain (customers, orders,

prices, products, etc). Regardless of the data that the resource

provides, the resource must be uniquely identifiable via a Uniform

Resource Identifier (URI); notably, the resource’s identifier must be

stable even if the resource itself is changed. For example, if Spotify

were to update the album art for a given song, a develop would

27

still to find it in the same query via their API; nothing would

change for the developer reliant on the API.

○ Manipulation of Resources through Representation: A client not

have direct access to a server-side database through the server’s

API. If a client wishes to manipulate information through the

server’s API, such as to change a user's profile picture, the client

must grab a copy of that resource, manipulate it, send the updated

representation to the server, and ask the server to update its

underlying resource. The server can then decide if this is an

appropriate change to make, thereby protecting the companies

underlying data-store from malicious edits.

○ Self-Descriptive Messages: The Self-Descriptive Message

constraint requires a message (be it a request or a response) to

include enough information for the receiver to understand it in

isolation. We’ll cover what this means in greater detail when

describing how REST APIs work in practice below.

○ Hypermedia as the Engine of Application State: Any RESTful

application should be entirely navigable through links. Navigable

links has allowed end-user clients to navigate to any part of a

website from a single ‘base’ URI, such as facebook.com, and, for

developers requesting APIs, it means the developer doesn’t need to

look at specified API documentation to purvey how to obtain a

desired resource.

○ Code on Demand: A server can extend the functionality of a client

at runtime by sending code to the client that the client should

execute (like JavaApplets or JavaScript). This property is similar to

the cacheability of REST, highlighting the architecture’s high

performance.

28

5.2 REST APIs in Practice:

If a client-side developer wishes to interact with an API, the developer need to

place a request that contains a certain amount of information:

● The Endpoint: The endpoint is the URL at which the developer is making

a request, and will define the kinds of information that the develop can

receive. The structure of an endpoint is as follows:

○ An endpoint always begins with a root, which typically represents

the high-level URL that the developer is interacting with. For

example, if a developer is interacting with Facebook’s API

(Facebook.com, not Facebook’s subsidiary companies’ APIs), the

request will always start with https://graph.facebook.com.

○ From there, the client-side developer must specify the path by

which to retrieve the desired information. As a metaphor, one can

think of this sub-section of the endpoint as an automated answer

machine, where the developer presses numbers to navigate

through a menu to the intended destination. As an example, if a

developer wanted to see who all of someone’s Facebook friends,

that path would be /user-id/friends. It’s important to note that this

looks exactly the same if the developer were utilizing Spotify’s API

to obtain the same information, going through links instead. To see

who a user’s friends are on Facebook via Spotify, the developer

would still need to click to the user’s profile (user-id), and then

click again to see the user’s friends.

● The Method: The method defines the type of request that the client-side

developer sends to the server, which are usually one of five types, and

allow for all the basic CRUD (create, remove, update, delete) operations:

○ GET: The developer gets the resource from the server, i.e. get a

user's Facebook friends.

https://graph.facebook.com/

29

○ POST: The developer creates a new resource on the server, i.e.

share a photo to a user’s Facebook profile.

○ PUT: The developer overwrites a resource on the server, i.e. adding

changing a user’s profile picture on Facebook.

○ PATCH: The developer updates parts of an existing resource in the

server, i.e. changing just a user’s description in the user’s profile

page. PUT and PATCH are fairly similar and choosing which one

to use is case specific and a frequent topic of debate [33].

○ DELETE: The developer removes a resource from the server, i.e.

removing a Facebook post.

● The Headers: Headers provide information to the client-side party about

how information can be handled by the client-side application, namely the

kinds of access an individual is allowed. For example, updating a user’s

Facebook profile through Facebook’s API is allowed only by that user him

or herself, thus rendering that the user of the client-side application must

proves an access-token that proves the server has given them permission

to make changes to that user’s profile; that access-token would be

included as a header, such that the client-side application can provide the

desired actions to their end-user. An example list of headers can be found

here [34].

● The Data (or Body): The Data (or Body) provides information that the

client wishes to revert to the server and is only used to perform a create,

update, or delete action. For example, if a user wants to change his or her

Facebook profile picture on a client-application that utilizes Facebook’s

API, the message reverted to the Facebook server must include the image

that needs to be uploaded as the replacement.

To put this all together, we construct an example query and response, shown

below, illustrating a simple yet precise interaction with a REST API:

● Request: api.example.com/GET/users/10

30

● Response:

 {

 “user”: {

 “id” : 10,

 “name” : “Satoshi Nakamoto”,

 “nickname” : “Seb”,

 “height” : 180,

 “Image_url” : “/images/10.jpg”

 }

 }

Figure 5.2.1: REST API Response.

5.3 Strengths and Weaknesses of REST:

Now that we have illustrated what a REST API is, and how developers can

interact with REST APIs, it is important to discuss the characteristics are that

have made REST so successful, and what shortcomings are threatening its

sustainability going forward.

● Strengths:

○ Flexible across languages and frameworks: One obvious reason

why the REST API has been so successful is that it works across

languages and frameworks. No matter how developers build their

applications, a REST API will work for them.

○ High interpretability: The fact that REST APIs are URL-based,

where each URL gives access to a certain amount of information,

renders REST APIs incredibly simple to interpret. All a third-party

developer requires is a URL, an understanding of what information

they will find there, and an understanding of how they can interact

with that information.

31

○ Server-side Logic: For a company building a REST API, its URL

driven nature is extremely simple to work with. The server-side

developers simply define a URL where they want certain

information to be visible, write logic for how to handle each type of

request, and the endpoint is created. However, as a company's API

scales in usage, figuring out the optimal way to structure endpoints

and the information they provide increases in complexity, a relative

weakness of this architecture, transitioning to our next section.

● Weaknesses:

○ Multiple Round Trip (Latency): The client will often need to

execute multiple trips to the server to fetch all of the information

the client requires. Each endpoint specifies a fixed amount of

information, and in many cases that information is only a subset of

what a client requires to populate the client’s page. As exhibited in

Figure 5.2.1 above, what if the client wished to display the users

image as well as their nickname in the client’s application? The

client send a GET request for the users information, thus obtaining

the location of the users image from the response, and then send

another GET request for the image URL. Every time the client

executes an extra request, another trip needs to be made back and

forth to the server, which requires additional time and thus

weakens user experience.

○ Verbose: When a client makes a request via a REST API, the

developer will get back all of the information stored there, even if

the developer doesn’t need all of it. For example, if a client is only

interested in the name and age of a user on Facebook, when the

client queries Facebook’s API, the client will get this information,

but will also receive all of the other information associated with

that user endpoint, such as the user’s profile picture, city of

residence, email address, etc. This leads to the transfer of excess

32

information, which causes the client to filter which parts of the

response the client wishes to utilize, increasing the time to provide

the end-user experience. Though developers have established

numerous methods to solve the problem of REST excess, the excess

still always adds significant overhead for client-side developers, as

the client-side developers need to make a lot of edge cases for

certain parameters being passed through.

○ Security with Multiple Endpoints: Given that each endpoint is

static and contains only a small set of information, the number of

endpoints scales almost linearly with the amount of information

servers wish to expose. Thus, popular web applications tend to

build out a significant number of endpoints. This is a nightmare for

data security, as companies have hundreds of different access

points to their server-side logic, and bad-actors will search for

vulnerabilities across each one of them.

○ Documentation: One of the biggest drawbacks of REST APIs is that

they are schema-less, which means client-side developers have no

idea what data structure will be returned when querying an API.

There is no way to understand from the endpoint itself what the

client will be receiving, and as such the back-end server-side

developers must maintain robust documentation to give their users

an idea of what to expect. This can be a nightmare to do, especially

if the server-side developers attempt to document their API

retroactively, and can also lead to slow ramp times for new

developers coming in. This is far from an impossible problem to

solve, but still a headache to contend with when working with

REST.

○ Updates: In practice, a significant number of endpoints are

designed on the go, with the frontend server-side team reaching

out to the backend server-side team with their data requirements,

33

consequently building an endpoint for them. This introduces

significant overhead in the software development process. Every

design iteration on the frontend that involves a change in the

displayed data needs to go through a process where the backend

team is directly involved, which can render APIs brittle and error

prone. APIs that are frequently changing are hard to maintain and

clients will have a hard time procuring the desired data. When

fields are removed from certain API responses without the client

being aware of it (the client was simply not alerted and is still

running against an older API version), there’s a high probability

that the client’s program will crash at runtime due to missing data.

Thus, although REST APIs pose significant positives, and are by far the most

universal type of API in the world today, there exist significant drawbacks to

implementing it at scale. Whilst these problems were less common 10-20 years

ago, as APIs were less ubiquitous and the amount of data being transferred was

smaller, REST’s problems are becoming increasingly serious for modern

developers.

GraphQL, an open-source project developed by Facebook, deals with a lot

of these issues whilst still maintaining the strengths that made REST APIs as

popular as they have become. After taking a further look, we hope to convince

you that GraphQL is in fact the future of API development.

5.4 GraphQL History and Analysis

In the early 2010s, Facebook struggled to build out their mobile app [35].

Facebook was traditionally strong at building web-experiences, and, because of

this, decided to display web views on mobile phones, instead of building a

native experience tailored to this smaller, less powerful device. This caused

34

serious issues for users, as mobile phones couldn’t keep up with the bandwidth

and network requirements to display these large web components.

The main problem was Facebook’s News Feed implementation on mobile, as

its web views not only required the retrieval of a post, but also significant

additional information that needed to be constantly updated, namely comments

and likes. Additionally, all of these Facebook posts were nested, interconnected,

and recursive, rendering Facebook unable to handle the complexity with their

existing APIs, due to a number of the weaknesses we mentioned above about

REST, namely roundtrips and verbose responses. Thus, Nick Schrock, Alex

Langenfield, Dan Schafer, and Lee Byron, four engineers working on the mobile

team at Facebook in 2015, developed GraphQL.

GraphQL is an open-source language for client-side applications to query

databases. GraphQL only exposes one endpoint, from which a client can retrieve

all of the desired information. A GraphQL request is essentially a string that,

when sent to a server, returns JSON back to the client. These responses will take

the same shape as the query, so clients know the shape of the data that’s returned

from running the query, rendering it significantly easier for client-side

developers to write queries, should client-side developers be cognizant of the

sorts of data their application requires.

In GraphQL, it is up to the server to grab relevant information and return it to

the client, whereas in REST the client needs to make multiple trips to return the

desired information. Pushing the burden of data retrieval to the server in this

way allows the client to retrieve many resources from the server in a single

request. GraphQL is strongly-typed [36]: it allows API users to know exactly

what data is available and the formatting of its existence. This renders it

significantly easier for clients to figure out how to build their queries and for

developers to maintain the API on the backend.

5.5 GraphQL as a ‘Fetching Tree’

35

While the name GraphQL may imply that this API structure optimized for graph

databases, this is not actually the case. GraphQL allows server-side developers to

model the resources and processes provided by their servers as a Domain

Specific Language. Thus, server-side developers can create a querying language

that maps specifically to the structure of their database, and force client-side

developers to conform to their naming conventions and structure in order to

formulate their queries, yet simultaneously allowing client-side developers to

execute more efficient queries.

The best way to understand how a GraphQL query is processed is by

abstracting away what queries generally look like. Typically, client-side

applications are designed in the form of discrete pages, which are seeded with

some tiny bit of data, and then perform a cascade of fetches to get the data

needed to provide a unique user experience to the end-user. As an example, let’s

assume that, on a client-sid web application, a profile page is ‘seeded’ with a

user-id, and from that information the web application can reach out to multiple

endpoints across the backend server architecture to grab the information

necessary to populate the rest of the page. The fundamental insight in the

development of GraphQL is that, in most cases, this contingent data fetching

forms a tree that is more or less fixed for a given page. Data from early responses

contain the keys for subsequent requests (such the address of my profile image in

the REST example provided earlier), and the linkages between these requests are

usually straightforward. As such, if the client can factor all of these disparate

fetches into one spot, encode them as one large fetching tree, and send that

fetching tree to the server, the client can receive all of the user’s data in request,

eliminating the multiple roundtrips that are often needed with REST APIs, and

consequently saving significant bandwidth and latency. Now that we have

established this abstraction of a query as a fetching tree, let us examine how the

fetching tree defined within GraphQL.

36

5.6 Anatomy of a GraphQL Request

A GraphQL request always starts with at least one ‘root’ API operation and

ensues with some finite number of follow-ups. These follow-ups serve as queries,

meaning they retrieve data without changing the server in any meaningful way.

GraphQL models all API operations as fields; these fields are split into two types:

● Scalars: Scalars represent the individual pieces of data that the server will

eventually deliver to the client. These are the leaves of the request tree,

and the data stored in these leaves can be arbitrarily complex.

● Objects: Objects are a collection of fields and serve as a junction in the

tree. Objects do not return any data, but route the client to the

appropriate scalars that the client is interested in.

The entire model for a given GraphQL API is known as its schema, and, in

contrast to a REST API, it is strongly-typed. Every schema possesses a route

query type, whose fields serve as the API’s entry points. An example of this is

shown below.

 type Query {

 user(id: ID): User

 image(url: Url): Image

 # … a whole bunch more root fields

 }

 type User {

 name: String

 nickname: String

 image: Image

 }

 type Image {

 url: String

 width: Int

 height: Int

37

 }

Figure 5.6.1: GraphQL Schema.

A GraphQL query begins by mentioning at least one of the fields of the root

query object, and the aforementioned field can be utilized to specify any follow

up queries. It is important to note that any field in the request tree can take

arguments, so a request can be parametrized at all depths. An example query is

shown below:

 {

 user(id: “10”) {

 name

 nickname

 image {

 url

 }

 }

 }

Figure 5.6.2: GraphQL Request.

Here the client is instructing the server to look up a user by the user’s slug (the

ID), returning specifically the user’s their name, nickname, and image URL,

executing the entire request in one trip instead of the two this request would

have required using REST. GraphQL achieves this improved efficiency because

of resolvers which are worth mentioning in additional detail.

5.7 Note on GraphQL Resolvers:

In GraphQL there is only one method of information propagation: the

propagation of context through a sequence of resolvers. While this sounds

complex, it simply means that when a client reaches the ‘image’ object in Figure

5.6.2 above, it understands the context that I am asking for the image associated

with the user that has the id “10”. Every field has a resolver. For scalar fields, the

38

resolver is responsible for returning the actual data that the client sees. For object

fields, the resolver instead returns a hidden chunk of data that is forwarded

along to the resolvers of the fields contained in the object; these resolvers obtain

their parent object’s hidden data, the global context, and any arguments, using

all of these values to produce the desired return value set.

Now that we have exhibited a GraphQL query, it is important to note that

the response will mirror the structure of that query, as shown below:

 {

 “data” : {

 “user” : {

 “name” : “Satoshi Nakamoto”,

 “nickname” : “Seb”,

 “image” : {

 “url” : “image_url”

 }

 }

 }

 }

Figure 5.7.1: GraphQL Response

5.8 Direct Comparison

Now that we understand REST GraphQL in more detail, let us compare why the

two architectures and articulate why we believe GraphQL is better than REST for

a majority today’s use cases, and why it will become entirely dominant in years

to come.

Let us model a company's API as a vending machine. With traditional REST,

a client presses one button on the vending machine and gets one thing. So, the

client has to press lots of buttons one at a time to get everything the developer

needs. This process is slow. One way to solve this problem is to create special

purpose buttons, which let the client get multiple things at once. Another way is

39

to allow the client to press a special purpose button and get a lot of information

at once from the vending machine, but the client can’t perfectly control the

information it receives, which can lead to you transferring more information than

is needed in some cases, increasing bandwidth and latency. GraphQL solves the

aforementioned inefficacies in the vending machine: vending machine that

allows for the client to press exactly one smart button that gives the client

everything the client wants in one go.

GraphQL solves these issues by having a single ‘smart’ endpoint rather than

having many ‘dumb’ endpoints. The key benefit is that smart endpoints are able

to take complex queries and shape the data output into whatever the client

requires. Essentially, the GraphQL layer exists between the client and data

sources. Its job is to receive client requests and fetch the necessary data based on

the client’s requirements. The GraphQL approach to querying addresses a wide

range of large-scale app development problems.

As you can imagine, GraphQL addresses most of the main weaknesses of

REST that were mentioned previously:

● Multiple Round Trip (Latency): Now that the client can push complex

queries to the server, and have it return all of the client’s desired

information in one go, round-trips are an item of the past.

● Verbose: With GraphQL the client only gets back the information the

client requested, no more irrelevant information.

● Security with Multiple Endpoints: With GraphQL, the server only has

one endpoint to protect, rendering a significantly easier task for back-end

security efforts.

● Documentation: Given that GraphQL is strongly typed, it’s a lot easier to

automate the creation of documentation; there are a number of services

that will do this for back-end developers. There are also great dashboards

that back-end developers can use to experiment with different queries and

see how the queries will be responded to by the back-end server.

40

● Updates: Additional fields can easily be added to the server, i.e. adding

new product features or deprecating older features, without affecting

existing clients. In this way, GraphQL brings about a backward-

compatible process that eliminates the need for incrementing version

numbers, simplifying versioning in general.

This is in fact one of the most valuable aspects of GraphQL - it doesn’t lose

any of the functionality that made REST so great, whilst improving on a lot of its

weaknesses. It is a rare example of a net additive to a widely adopted system,

why it has gained popularity so quickly.

It is also fairly easy to convert from an existing REST API to a GraphQL API,

and given the low switching cost and explosion of managed tools to help

maintain a GraphQL system, the choice to migrate is only going to get easier.

All this being said, GraphQL is far from a perfect system. In fact, similarly to

Kubernetes [37], the reason it provides so many distinct benefits is because it is a

significantly more complex system than REST.

5.9 Weaknesses of GraphQL

GraphQL has been optimized for modern systems, companies that are embracing

future-facing architectures. The world is moving towards microservices, which

means that they are breaking their large applications into independent

components that communicate with one another via APIs [38]. As we have

discussed, REST struggles to scale, a deal-breaker when it comes to

microservices. By the nature of this decoupled architecture, there exist

significantly more API calls being made, and a lot more updates being made to

data schemas in the back-end, which are actions that REST struggles with

significantly.

As such, it is important to understand where GraphQL faces issues when

serving a microservice architecture, as for more trivial use-cases it may be over-

engineered:

https://www.prisma.io/blog/how-to-wrap-a-rest-api-with-graphql-8bf3fb17547d

41

● Schema Design:

○ In a microservice architecture, like all multi-service architectures,

each service exposes a certain amount of information about the

back-end system, and there are multiple services working in

tandem to run your application. To embrace the powers of

GraphQL, back-end developers need to stitch all of these services

together under a unified schema, which can cause issues around

duplication of resources, and conflicting fields between resources.

○ One solution here is Prefixing, where the back-end developer adds

a prefix to each of the broadcasted microservices, such the

microservices are all logically separated. This adds a layer of

abstraction that actually detracts from the centralized promise of

GraphQL, as each service is treated as an island, meaning it

becomes impossible to concatenate resource relationships across

services. The benefits are that this is very easy to implement.

Figure 5.9.1: GraphQL Schema Prefixing.

42

○ Another solution, which is the official recommendation of

GraphQL, takes the form of Bonding, where the back-end

developer glues the different GraphQL Schemas from each

microservice into a uniform interface. In the past, this required

developers to manually stitch schemas together, which adds a

serious amount of complexity, but the recent launch of Apollo

Federation is a significant step in reducing the complexity of this

approach [39]. As such, the community is moving towards

solutions that are able to get information from multiple services

whilst staying true to the GraphQL methodology.

Figure 5.9.2: GraphQL Schema Stitching.

● Certification and Authorization:

○ GraphQL renders a multi-tiered service as we’ve seen above. On

the top level exists the GraphQL server itself, which takes the

43

request from the client and handles the response. Beneath the top

level exists the middle tier, which handles communication from the

GraphQL server to the various microservices, and the data tier

from which the microservices get data to push back up to the

GraphQL server.

○ As such, for authorization developers can choose to decide whether

a user has permission to operate on a certain resource at the

GraphQL server level, or the microservice level, and the answer to

this problem culminates as a trade-off between a centralized and

distributed architecture. This is actually a trickier problem than

developers might anticipate. Let’s assume that all the authorization

is done at the GraphQL server level; this would mean that the

services fully trust the call of other services, which can lead to

vulnerabilities. On the other hand, if authorization is left as a

service level decision, then each service needs its own logic and

will need to provide different interfaces to different GraphQL

requests, which adds complexity. In principle, companies need to

define a hybrid approach in which secondary checks are made at

the micro-service level for certain requests, but, as exhibited, this is

not a simple thing to think through and set up.

● Routing Design:

○ When a request comes in, the GraphQL server is responsible for

routing that request to the correct services from which it can get the

information. If the server possesses a single backend service this is

very easy, as it will have access to all the information, but if that’s

not the case (as is typical of large microservice deployments), then

routing the requests efficiently becomes a problem.

○ GraphQL schema stitching is actually a solution here, as it will

implicitly route request fragments to the appropriate microservices

through the various resolvers that were updated in order to stitch

44

the service schemas together. In this case, no manual intervention is

required, unless there exists a conflict in the schema type (i.e an

update has been made to the data model in the relevant

microservice). There exist some nice properties of GraphQL that

can help here, like the fact that developers can define the expected

time it will take for a request to execute, so the server has an idea of

how to prioritize effectively, but solving this problem requires

significant manual effort. Handling the routing of requests is a

fundamental problem that needs to be addressed in every

GraphQL system, and it is far from simple to handle a large

amount of concurrent requests to various services in a reliable and

efficient way.

● Error Handling:

○ With a typical REST query, the response given will typically

describe the outcome of the request. For example, if the request

succeeds, the client will receive a code 200; if the resource couldn’t

be found, the client will receive a code 404. In GraphQL, this isn’t

the case; clients will always receive a code 200 meaning the query

returned successfully, and any information about errors will be

wrapped in the return object. This means client-side developers

must write custom logic for error handling that can be tedious and

add complexity to the overall system.

Thus, despite the benefits of GraphQL, there exist significant issues that

developers face when implementing it in production. However, we believe this

friction is true of any new technology seeking to fully disrupt a market, and no

aspect of GraphQL’s design seems to be a fundamental limiter of its potential

success. It is able to deal with a more complex set of use-cases because it is more

complex, and, as with Kubernetes, it may take additional time before a user-

friendly version of GraphQL is available to use broadly against a microservice

45

architecture, but, once it does, it will dominate the market. It is our belief that

GraphQL is perfectly positioned to capitalize on the architecture of the future,

and that as the world moves to cloud and microservice architectures, GraphQL

rise to dominate the API ecosystem. However, REST is still the leading solution

and so must be accounted for as such.

46

6 Bibliography

[1] Wanseob-Lim. “Zkopru (Zk Optimistic Rollup) for Private Transactions.”

Ethereum Research, 21 July 2020, https://ethresear.ch/t/zkopru-zk-optimistic-

rollup-for-private-transactions/7717

[2] Bakst, Andrew. “Bizantine’s Law - Andrew Bakst.” Medium, 18 July 2020,

medium.com/@apbakst/bizantines-law-c9bc93529e89.

[3] “Secure Multi-Party Computation: Theory, Practice and Applications.”

ScienceDirect, 1 Feb. 2019,

www.sciencedirect.com/science/article/pii/S0020025518308338. & “What Is Fully

Homomorphic Encryption.” Inpher, https://www.inpher.io/technology/what-is-

fully-homomorphic-encryption.

[4] Voell, Zack. “Decentralized Exchange Volumes Up 70% in June, Pass $1.5B.”

CoinDesk, 1 July 2020, https://www.coindesk.com/decentralized-exchange-

volumes-up-70-in-june-pass-1-5-billion.

[5] Wikipedia contributors. “Elliptic Curve Digital Signature Algorithm.”

Wikipedia, 17 Aug. 2020,

https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm.

[6] Yang, Junha. “Blockchain Light Client - CodeChain.” Medium, 3 Feb. 2020,

https://medium.com/codechain/blockchain-light-client-1171dfa1269a.

[7] Bengtsson, Ivar and Fichter, Michael. “Modeling and Optimizing Transaction

Fees in a proof-of-stake cryptocurrency.” 2018,

http://kth.divaportal.org/smash/get/diva2:1218593/FULLTEXT01.pdf.

https://ethresear.ch/t/zkopru-zk-optimistic-rollup-for-private-transactions/7717
https://ethresear.ch/t/zkopru-zk-optimistic-rollup-for-private-transactions/7717
mailto:medium.com/@apbakst/bizantines-law-c9bc93529e89
http://www.sciencedirect.com/science/article/pii/S0020025518308338
https://www.inpher.io/technology/what-is-fully-homomorphic-encryption
https://www.inpher.io/technology/what-is-fully-homomorphic-encryption
https://www.coindesk.com/decentralized-exchange-volumes-up-70-in-june-pass-1-5-billion
https://www.coindesk.com/decentralized-exchange-volumes-up-70-in-june-pass-1-5-billion
https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://medium.com/codechain/blockchain-light-client-1171dfa1269a
http://kth.divaportal.org/smash/get/diva2:1218593/FULLTEXT01.pdf

47

[8] Blocknative. “Evidence of Mempool Manipulation on Black Thursday:

Hammerbots, Mempool Compression, and Spontaneous Stuck Transactions.”

BlockNative, https://blog.blocknative.com/blog/mempool-forensics.

[9] Young, Joseph. “Why A Mysterious Ethereum User Paid $2.6 Million To Send

$130 Of Crypto.” Forbes, 10 June 2020,

https://www.forbes.com/sites/youngjoseph/2020/06/10/why-a-mysterious-crypto-

user-paid-26-million-to-send-merely-130-in-ethereum/#485be9b9588a

[10] Pourmajidi, William and Miranskyy, Andriy. “Logchain: Blockchain-assisted

Log Storage.” 22 May, 2020, https://arxiv.org/pdf/1805.08868.pdf

[11] “Global Cloud Database and DBaaS Market (2020 to 2025) - Increase in the

Growth of NoSQL Database Provides Opportunities -

ResearchAndMarkets.Com.” Business Wire, 17 Mar. 2020,

www.businesswire.com/news/home/20200317005638/en/Global-Cloud-Database-

DBaaS-Market-2020-2025.

[12] “Usability: A Part of the User Experience.” The Interaction Design Foundation,

28 July 2020, https://www.interaction-design.org/literature/article/usability-a-

part-of-the-user-experience.

[13] Zhao, Yuanyuan, Sturman, Daniel, and Bhola Sumeer. “Subscription

Propagation in Highly-Available Publish/Subscribe Middleware.”

https://www.researchgate.net/profile/Yuanyuan_Zhao17/publication/221461384_

Subscription_Propagation_in_HighlyAvailable_PublishSubscribe_Middleware/li

nks/5640600208ae34e98c4e7d50/Subscription-Propagation-in-Highly-Available-

Publish-Subscribe-Middleware.pdf

https://blog.blocknative.com/blog/mempool-forensics
https://www.forbes.com/sites/youngjoseph/2020/06/10/why-a-mysterious-crypto-user-paid-26-million-to-send-merely-130-in-ethereum/#485be9b9588a
https://www.forbes.com/sites/youngjoseph/2020/06/10/why-a-mysterious-crypto-user-paid-26-million-to-send-merely-130-in-ethereum/#485be9b9588a
https://arxiv.org/pdf/1805.08868.pdf
http://www.businesswire.com/news/home/20200317005638/en/Global-Cloud-Database-DBaaS-Market-2020-2025
http://www.businesswire.com/news/home/20200317005638/en/Global-Cloud-Database-DBaaS-Market-2020-2025
https://www.interaction-design.org/literature/article/usability-a-part-of-the-user-experience
https://www.interaction-design.org/literature/article/usability-a-part-of-the-user-experience
https://www.researchgate.net/profile/Yuanyuan_Zhao17/publication/221461384_Subscription_Propagation_in_HighlyAvailable_PublishSubscribe_Middleware/links/5640600208ae34e98c4e7d50/Subscription-Propagation-in-Highly-Available-Publish-Subscribe-Middleware.pdf
https://www.researchgate.net/profile/Yuanyuan_Zhao17/publication/221461384_Subscription_Propagation_in_HighlyAvailable_PublishSubscribe_Middleware/links/5640600208ae34e98c4e7d50/Subscription-Propagation-in-Highly-Available-Publish-Subscribe-Middleware.pdf
https://www.researchgate.net/profile/Yuanyuan_Zhao17/publication/221461384_Subscription_Propagation_in_HighlyAvailable_PublishSubscribe_Middleware/links/5640600208ae34e98c4e7d50/Subscription-Propagation-in-Highly-Available-Publish-Subscribe-Middleware.pdf
https://www.researchgate.net/profile/Yuanyuan_Zhao17/publication/221461384_Subscription_Propagation_in_HighlyAvailable_PublishSubscribe_Middleware/links/5640600208ae34e98c4e7d50/Subscription-Propagation-in-Highly-Available-Publish-Subscribe-Middleware.pdf

48

[14] “Optimistic Rollups.” https://docs.ethhub.io/ethereum-roadmap/layer-2-

scaling/optimistic_rollups/

[15] Giroux, Marc-AndrÉ “On GraphQL Schema Stitching & API Gateways -

Marc-André Giroux.” Medium, 24 Oct. 2018,

https://medium.com/@__xuorig__/on-graphql-schema-stitching-api-gateways-

5dcb579fa90f.

[16] “Web Cryptography API.” Wikipedia, 7 Aug. 2020,

https://en.wikipedia.org/wiki/Web_Cryptography_API

[17] Compound-Finance. “Compound-Finance/Compound-Protocol.” GitHub,

https://github.com/compound-finance/compound-

protocol/blob/master/contracts/Governance/GovernorAlpha.sol.

[18] Peterson, Jack, Krug, Joseph, Zoltu, Micah, Williams, Austin, and Alexander,

Stephanie “Augur: A Decentralized Oracle and Prediction Market Platform

(v2.0).” Whitepaper, https://augur.net/whitepaper.pdf

[19] “Fuel Labs.” Medium, https://medium.com/@fuellabs.

[20] “Patricia-Tree.” Ethereum Wiki, https://eth.wiki/en/fundamentals/patricia-

tree.

[21] Ethereum-Optimism. “Ethereum-Optimism/Optimism-Monorepo.” GitHub,

https://github.com/ethereum-optimism/optimism-monorepo.

[22] “When Should I Use Calldata and When Should I Use Memory?” Ethereum

Stack Exchange, 30 Aug. 2019,

https://docs.ethhub.io/ethereum-roadmap/layer-2-scaling/optimistic_rollups/
https://docs.ethhub.io/ethereum-roadmap/layer-2-scaling/optimistic_rollups/
https://medium.com/@__xuorig__/on-graphql-schema-stitching-api-gateways-5dcb579fa90f
https://medium.com/@__xuorig__/on-graphql-schema-stitching-api-gateways-5dcb579fa90f
https://en.wikipedia.org/wiki/Web_Cryptography_API
https://github.com/compound-finance/compound-protocol/blob/master/contracts/Governance/GovernorAlpha.sol
https://github.com/compound-finance/compound-protocol/blob/master/contracts/Governance/GovernorAlpha.sol
https://augur.net/whitepaper.pdf
https://medium.com/@fuellabs
https://eth.wiki/en/fundamentals/patricia-tree
https://eth.wiki/en/fundamentals/patricia-tree
https://github.com/ethereum-optimism/optimism-monorepo

49

https://ethereum.stackexchange.com/questions/74442/when-should-i-use-

calldata-and-when-should-i-use-memory.

[23] Wood, Gavin “Ethereum: A Secure Decentralised Generalised Transaction

Ledger Petersburg Version” 2020-06-08,

https://ethereum.github.io/yellowpaper/paper.pdf

[24] zkSync: Gluchowski, Alex. “Introducing ZkSync: The Missing Link to Mass

Adoption of Ethereum.” Medium, 18 June 2020, https://medium.com/matter-

labs/introducing-zk-sync-the-missing-link-to-mass-adoption-of-ethereum-

14c9cea83f58.

Validium: Kirejczyk, Market, Szlachciak, Piotr, Jelski, Krzysztof, Maretskyi,

Dmytro, Wiech, Arleta, Charczuk, Joanna, and Kirejczyk, Natalia “Zero-

Knowledge Blockchain Scalability.” Summer, 2020,

https://ethworks.io/assets/download/zero-knowledge-blockchain-scaling-

ethworks.pdf.

[25] Alex, Chris. “Balancer Thesis.” Placeholder, 20 July 2020,

https://www.placeholder.vc/blog.

[26] The Block. “Popular Ethereum Wallet MetaMask Adopts New Software

License as Firm Eyes Commercial Opportunities.” The Block, 21 Aug. 2020,

https://www.theblockcrypto.com/linked/75751/metamask-new-software-license-

commercial.

[27] Martinez, Julian. “Understanding Proof of Stake: The Nothing at Stake

Theory.” Medium, 22 Jan. 2020, https://medium.com/coinmonks/understanding-

proof-of-stake-the-nothing-at-stake-theory-1f0d71bc027.

https://ethereum.stackexchange.com/questions/74442/when-should-i-use-calldata-and-when-should-i-use-memory
https://ethereum.stackexchange.com/questions/74442/when-should-i-use-calldata-and-when-should-i-use-memory
https://ethereum.github.io/yellowpaper/paper.pdf
https://medium.com/matter-labs/introducing-zk-sync-the-missing-link-to-mass-adoption-of-ethereum-14c9cea83f58
https://medium.com/matter-labs/introducing-zk-sync-the-missing-link-to-mass-adoption-of-ethereum-14c9cea83f58
https://medium.com/matter-labs/introducing-zk-sync-the-missing-link-to-mass-adoption-of-ethereum-14c9cea83f58
https://ethworks.io/assets/download/zero-knowledge-blockchain-scaling-ethworks.pdf
https://ethworks.io/assets/download/zero-knowledge-blockchain-scaling-ethworks.pdf
https://www.placeholder.vc/blog
https://www.theblockcrypto.com/linked/75751/metamask-new-software-license-commercial
https://www.theblockcrypto.com/linked/75751/metamask-new-software-license-commercial
https://medium.com/coinmonks/understanding-proof-of-stake-the-nothing-at-stake-theory-1f0d71bc027
https://medium.com/coinmonks/understanding-proof-of-stake-the-nothing-at-stake-theory-1f0d71bc027

50

[28] “Synthetix | Decentralised Synthetic Assets.” Synthetix,

https://www.synthetix.io/. Accessed 22 Aug. 2020.

[29] Substreight. “YIP 30: YFI Inflation Schedule.” Yearn.Finance, 2 Aug. 2020,

https://gov.yearn.finance/t/yip-30-yfi-inflation-schedule/1439.

[30] Fielding, Roy “Architectural Styles and the Design of Network-based

Software Architectures.” UCI, 2000,

https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf

[31] Elements, Cloud. “The State of API Integration 2019 | Cloud Elements.”

Cloud Elements, https://offers.cloud-elements.com/the-state-of-api-integration-

2019#:%7E:text=The%20State%20of%20API%20Integration%202019%20Report&t

ext=Our%202019%20State%20of%20API,industry%20is%20heading%20in%20201

9.%20Accessed%2022%20Aug.%202020.

[32] “Front End and Back End.” Wikipedia, 22 June 2020,

https://en.wikipedia.org/wiki/Front_end_and_back_end.

[33] rapidAPI Staff “What’s the Difference between PUT vs PATCH?” rapidAPI,

17 August 2020, https://rapidapi.com/blog/put-vs-patch/

[34] “HTTP Headers.” MDN Web Docs, 27 Apr. 2020,

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers.

[35] “TechCrunch Is Now a Part of Verizon Media.” TechCrunch, 29 Jan. 2014,

https://techcrunch.com/2014/01/29/one-app-at-a-time/.

[36] “Strongly Typed.” Techopedia.Com,

https://www.techopedia.com/definition/24434/strongly-typed.

https://www.synthetix.io/
https://gov.yearn.finance/t/yip-30-yfi-inflation-schedule/1439
https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
https://offers.cloud-elements.com/the-state-of-api-integration-2019#:%7E:text=The%20State%20of%20API%20Integration%202019%20Report&text=Our%202019%20State%20of%20API,industry%20is%20heading%20in%202019.%20Accessed%2022%20Aug.%202020.
https://offers.cloud-elements.com/the-state-of-api-integration-2019#:%7E:text=The%20State%20of%20API%20Integration%202019%20Report&text=Our%202019%20State%20of%20API,industry%20is%20heading%20in%202019.%20Accessed%2022%20Aug.%202020.
https://offers.cloud-elements.com/the-state-of-api-integration-2019#:%7E:text=The%20State%20of%20API%20Integration%202019%20Report&text=Our%202019%20State%20of%20API,industry%20is%20heading%20in%202019.%20Accessed%2022%20Aug.%202020.
https://offers.cloud-elements.com/the-state-of-api-integration-2019#:%7E:text=The%20State%20of%20API%20Integration%202019%20Report&text=Our%202019%20State%20of%20API,industry%20is%20heading%20in%202019.%20Accessed%2022%20Aug.%202020.
https://en.wikipedia.org/wiki/Front_end_and_back_end
https://rapidapi.com/blog/put-vs-patch/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers
https://techcrunch.com/2014/01/29/one-app-at-a-time/
https://www.techopedia.com/definition/24434/strongly-typed

51

[37] “Production-Grade Container Orchestration.” Kubernetes,

https://kubernetes.io/. Accessed

[38] “Microservices.” Martinfowler.Com,

https://martinfowler.com/articles/microservices.html.

[39] “Apollo Federation.” Apollo Blog,

https://www.apollographql.com/blog/apollo-federation-f260cf525d21/.

https://kubernetes.io/
https://martinfowler.com/articles/microservices.html
https://www.apollographql.com/blog/apollo-federation-f260cf525d21/

	1 Background
	1.1 Background
	1.2 Introduction

	2 Architecture
	2.1 Message Propagation Protocol
	2.3 APIS Core Contracts
	2.4 Governance Contract (GC)
	2.5 Dispute Resolution Contract (DRC) Factory
	2.6 Optimistic Rollup Contract

	3 Applications
	3.1 IDs
	3.2 API Token
	3.3 Token Distribution, Community Ownership

	4 Discussion
	5 Appendix: Analysis of REST versus GraphQL
	5.1 REST History and Analysis
	5.2 REST APIs in Practice:
	5.3 Strengths and Weaknesses of REST:
	5.4 GraphQL History and Analysis
	5.5 GraphQL as a ‘Fetching Tree’
	5.6 Anatomy of a GraphQL Request
	5.7 Note on GraphQL Resolvers:
	5.8 Direct Comparison
	5.9 Weaknesses of GraphQL

	6 Bibliography

