Liquifi Protocol

Igor Struchkov Alexey Zubritskiy
igors@liquifi.org azubr@liquifi.org
Igor Mikhalev Bihao Song

igorm@liquifi.org bihao@liquifi.org
October 2020

Abstract

This whitepaper contains a technical description of Liquifi proto-
col principles, architecture, smart contracts, governance and evalua-
tion. Liquifi is a protocol for a decentralized digital asset exchange
(DEX). It has all functions of an ordinary liquidity pool DEX with
some traits of order book DEX that allow traders to get better ex-
change rates and give arbitrageurs new profitable opportunities. The
whitepaper contains a proof of the main protocol feature - time-locked
swap operations that allow counter-trades to be performed in paral-
lel, compensating price movements and thus decreasing price slippage.
Liquifi protocol also introduces a possibility of zero-fee trades under
certain conditions. Liquifi follows decentralized governance and fair
launch principles from the very beginning. We present Liquifi gov-
ernance smart contracts that allow community of liquidity providers
to take control over the protocol parameters in a decentralized way,
without any party having exclusive rights. Besides the theoretical
proof, we present simulation results that show protocol performance
in different market conditions.

1 Introduction

DeFi, short for “decentralized finance”, is an umbrella term for a variety of
financial applications in cryptocurrency or blockchain geared towards remov-
ing existing intermediaries, banks and others, from the value chain. It gives

users an alternative by removing the need to trust any central party at all,
which results in major cost savings and potentially service performance im-
provement for FI (financial institution) users. The approach of using smart
contract to provide financial services, e.g. exchange, lending platoform and
later the services based on new concepts, such as yield farming, liquidity min-
ing, composability and money legos, give the new and the narrowed definition
of DeFi that we are refering to these days.

Decentralized digital asset exchanges (DEXes) are important players on DeFi
market, allowing to trade digital assets (usually, ERC20 tokens) automati-
cally using smart contracts without any third party interaction. There are
two main types of DEXes being used, the liquidity-pool based, with the ex-
amples like Uniswap, Balancer, and the order-book based, like Loopring and
DiversiFi. We listed the different characteristics of these DEX below.
Liquidity-pool based DEX:

e Liquidity pool providers invest digital assets
e Trades are performed against the pool, a counterparty is not required

e Current exchange price is determined automatically depending on dig-
ital assets ratio in the pool (automatic market maker, AMM)

e Every trade changes digital assets ratio and therefore the price

e When the pool price differs from the market price, arbitrageurs make
profitable trades against the pool and push the pool price back to the
market level

Orderbook based DEX:
e Trades are performed between two counterparties

e Parties put orders which are recorded in the order book at the corre-
sponding price levels

e The first party (Maker) sets an initial order, others (Takers) close deals

e Current exchange price is identified by the top of the order book (high-
est bid and lowest ask)

Liquidity pool DEX Order book DEX
N fi ki kers — .
% 0 need for market JHakers trades are Order flow familiar for traders
& | completely automatic
g Possible to implement completely on-chain | Less price slippage
&
>
erj Easy to invest ‘ Look more professional
Price 'shp.page. For big dgals the impact Need at least 2 participants (one is
5 on price is stronger, making the
0 . a market maker)
< exchange less attractive.
=
s
< . o Order fulfillment needs off-chain
= On-chain implementation limits rocessin
A throughput p &

Table 1: comparison of liquidity pool DEX and order book DEX

By comparing the two types of DEX as shown in table 1, we can see that
liquidity pool DEX is easier to be set up and used by investors at different
scale. But it has price slippage problem, bigger the deal is, more slippage of
the price it will cause.

In order to resolve the problem faced when using common liquidity pool DEX
protocols, we introduced Liquifi, another DeFi protocol for a decentralized
digital asset exchange. It is based on liquidity pool principle which allows
Liquifi to maintain pools for various digital asset pairs that are used to per-
form swap operations automatically using Liquifi automatic market maker
(AMM) model. Anybody can invest liquidity (digital assets) into the pools
and earn pool fees from swap operations.

Comparing with other common DEX protocols, Liquifi brings the following

changes:

e First, Liquifi has an advanced automatic market maker (AMM) model
that is built on the classic constant product model with a new smooth
liquidity flow feature. This feature allows to get better exchange rates
than with the classic model, especially for large deals. This is achieved
by extending swap operations over a given time period. Thus, arbitrage
trades can occur in parallel with the large deal, providing liquidity to
make the final price better.

e Second, Liquifi is not vulnerable to frontrunning and transaction re-
ordering problems because arbitrageurs do not compete to place their
transactions in front of the others. Instead, arbitrageurs can imple-
ment more complex strategies when choosing a proper time instant to
perform their trades.

Generally speaking, Liquifi has all functions of an ordinary liquidity pool
DEX with some traits of order book DEX that allow traders to get better
exchange rates and give arbitrageurs new profitable opportunities.

Liquifi is set up and maintained by an open community of developers, in-
vestors, liquidity providers interested in proper operation and evolution of
the protocol. Together they form a decentralized autonomous organization
(DAO) backed by Liquifi governance smart contracts. DAO is the only entity
that can influence the protocol parameters. Based on this well established
DAO, Liquifi follows decentralized governance and fair launch principles from
the very beginning.

2 Key Concepts

Liquifi automatic market maker (AMM) model is based on constant product
model, i.e. x -y = k invariant is held for a liquidity pool token pair (z,y).
On top of the standard model Liquifi introduces a new exchange algorithm,
which is especially benefitial for big deals and/or small liquidity pools. The
main idea behind Liquifi model is that traders are allowed to set a timeout
for their swap operation and wait to get better price for their deal - so called
time-locked operation. This is implemented by utilizing some elements of
order book exchange: namely, a time-locked operation is placed as an order
and can be (at least partially) compensated by symmentric deals from other
traders.

2.1 Proof

Assume Traderl wants to sell z; of tokens A for tokens B. Let (xq, o) be
the current quantity of tokens A and tokens B respectively in the liquidity
pool. Let us also assume for simplicity that pool fee is 0. Using the standard
constant product formula, Traderl then will get y; of tokens B:

ToYo
T+ Xo

Y1 =Yoo —

So the constant product price for tokens A is

-
Iy

Py

Now, instead of performing immediate transaction at price P, Traderl spec-
ifies deal timeout T and enters pool wait list. One can imagine that Traderl’s
deal is not done at once, but is spread over time with uniform liquidity flow
over this period. The number of tokens A swapped at time t, 0 < ¢ < T is:

t
za(t) =27 - T
Without any interfering transactions, the process will result to the same swap
price Py.
Assume that at time moment 0 < t, < T Trader2 wants to sell y5 of tokens
B for tokens A. The pool balance at this moment will be:

ZoYo
x(t2)

z(t2) = mo + walte),y(t2) =

So, Trader2 will get x5 of tokens A:

ToYo

))

The exchange price for him will be:

Py="22
Y2
If nothing else happens until time T, the final pool balance at time T will
be:

ToYo LoYo

I(T) =Xy + 1 —x27y(T) = {L‘(T) - To+ 71 — To

So, now Traderl will get | of tokens B:

ZoYo

/
= + -
h Yo & Zo + r1 — X2

Taking into account that tokens A price would be the lowest after full com-
pletion of Traderl’s deal, we get:

ToYo ZoYo

o <zx(T)— —"F—=x9+2, — ————
) y2 +y(T) Y2 + Yo — Y1
when t, < T.
Then we get:
T
1‘0+$1-[L’2>07y0
Y2+ Yo — Y1
x
O—yo<yz+yo_y1
To+ T1 — X2
vy >0

Thus, Traderl will get more for his tokens A than in constant product AMM
and

Y
P,=2=>P
AT A

3 Functional description

3.0.1 Liquifi operation types

Liquifi protocol is an extension to the standard constant product exchange
and allows all types of basic operations. Liquifi also adds new featured op-
eration types. Overall list of operations is following:

e Standard immediate swap operation;
e Immediate swap operation with zero fee;
e Flash swap operation;

e Time-locked operation.

3.1 Standard immediate swap operations

Standard swap operations are performed in one transaction. Let a pool con-
tain xo amount of tokens A and y amount of tokens B. Assume operation to
swap N4 tokens A for tokens B. Then the operation output Ng is calculated
using constant product formula:

where v =1 — «, « is pool fee.
The fee amount N4 is added to the pool at the operation completion.

3.2 Time-locked operations
3.2.1 Swap order wait lists

Let a swap order to sell TokenA for TokenB be denoted by a tuple Oy4; =
{z;, T}, Ps;} where z; is the number of TokenA to sell, T; is timeout, Py; is
stop loss swap price.

Let a swap order to sell TokenB for TokenA be denoted by a tuple Op; =
{y;, Tj, Py;} where y; is the number of TokenB to sell, 7} is timeout, P;; is
stop loss swap price.

Then each pool maintains a swap order wait list for O4; and Op; orders.

3.2.2 Liquidity flow

Every order in a wait list has a corresponding token count:
e For TokenA /TokenB orders Sy; is the currently spent TokenA amount;
e For TokenB/TokenA orders Sg; is the currently spent TokenB amount.

Let t be time elapsed since an order entered the wait list. Then

t t
Sai(t) = x; - T Spj(t) =y; - T

We can use the first derivative to calculate the speed of liquidity flow from
each order:
dSai x _ dSpj _ Y

S e A

7

And the total liquidity flow from all currently active orders (let n be the
number of active TokenA /TokenB orders and m be the number of active
TokenB/TokenA orders) is:
dsS A € dSB Yj
S/ = — = —Z’ S/ = — = —']
Tt 192n TPt 1§%m T;

Liquidity flow is a piecewise linear function with break points at time mo-
ments when the wait list changes. This can be:

e Entering a new order to the wait list

Liquidity deposit/withdraw operation

All kinds of immediate swaps

Closing an order that has timeout expired

Closing an order for which stop loss price limit is reached (Py;)

Closing an order by user request

Closing an order by governance

3.2.3 Swap price calculation

Let a be the pool fee and v = (1 — «).
Using the constant product market maker model we get:

t
(7St + g — ySELP)(vSpt + o — 7514?) = ZoYo

Here zy and gy, are TokenA and TokenB amounts respectively at the begin-
ning of the current linear flow section, t is time from the beginning of the
current linear flow section, P is a calculated fair price for partial orders in
both directions.

If S% = 0 or S; = 0 then the price P (or) becomes a usual constant
product swap price.

In general case we have to solve the following quadratic equation to find the
price P at time t:

(vS2t2 + Shyot)P? — (275", St + Shaot + S'yyot) P + 4SS + SYaot = 0

8

/

This equation appears to have two positive roots when g—f‘ ratio is different
B
from the token ratio in the pool. One root equals to g—f‘ and the second root
B
%4 ratio equals to the token
B
ratio in the pool, the equation has just one root.
Using Vieta’s formula we can get the final expression for the target price P:

is the target price P. For a special case when

St 4 w0
YSBt + Yo

We can also derive a formula to get time t when a given price P is reached:

zo — Pyo
Hp)= oW
)= Py, — 5

From this a moment when stop loss price limit P;;) is reached for some order
i(j) is
1
ts = t(§ Paiy)

taking into account the fee factor.

3.2.4 Pool pressure

Having calculated P(t), we can predict swap price at some future moment t
provided that no other orders come or complete. If we take a standard time
interval T (e.g. 1 minute) for t, and the current pool swap price P,, we can
calculate pool pressure R as

P(T) - P,

R = 2

3.2.5 Smart contract operation

For on-chain swap operations the following implementation is proposed.

1. Liquifi pool smart contract keeps track of the closest linear liquidity flow
function break point t*. It could be either the closest order timeout
expiration or calculted time for the closest stop loss limit event.

2. When a wait list recalculation operation is triggered, e.g. when a new
order or transaction comes, the smart contract checks whether ¢t* has
been reached. If true, a corresponding order is completed and new
values for Sy, S, xo, yo are calculated as well as a new break point t*.
If it is also in the past, then the recalculation is repeated until ¢* is in
the future.

3. Then, if there is an outstanding immediate swap operation, it is per-
formed, and again Sy, S, %o, Yo, t* are recalculated.

To make the break points recalculation more efficient, wait lists may be
indexed in two ways: sorted by order timeout expiration and sorted by stop
loss events time (separately for O4; and Op; orders). When a new order is
added, it must be placed in these indices accordingly (search for a proper
insertion place may be performed off-chain and then verified by the smart
contract).

3.2.6 Handling fees

It is known that when fees are applied making several small swap operations
gives less output than one operation with equal amount. Therefore, to make
time-locked operations at least as profitable as immediate swaps, Liquifi ac-
cumulates fees for a time-locked operation and adds them to the pool only
after the operation completes.

3.3 Immediate swap operations with zero fee

To facilitate arbitrage counter-deals when time-locked operations are in progress,
Liquifi introduces zero-fee incentive for arbitrageurs that perform counter-
deals in parallel with time-locked operations. Maximum amount of such
zero-fee arbitrage deals is limited by the following algorithm.

When a new order arrives, the contract starts to add input token amount
of the order with a corresponding liquidity flow speed to a corresponding
variable: I4 for A/B orders and I for B/A orders.

La(t) = Ia(to) + > St —to), In(t) = In(to) + > Sp;(t —to)

1<i<n 1<j<m

where ¢, is the last moment of variable recalculation.

10

When any order is closed, a corresponding input token amount is subtracted
or, if a corresponding I variable is less than this amount, it is assigned 0,
enforcing that always I4(t) > 0 and Ip(t) > 0:

La(t) = maz(Ia(t) — S'y(t — to:), 0)
Iy(t) = maz(Ip(t) — S, (t — to;), 0)

where (;, and %y; are starting times of corresponding time-locked operations.
When an arbitrage deal request, pretending on zero fee, arrives, it’s amount
(D) is checked against the I variables difference, i.e. if the arbitrage deal is
B/A, then it is checked as follows:

where A and B are total amounts of tokens in the pool.
If the condition above holds, the deal is allowed zero fee. Anyway, the amount
of arbitrage deal is then subtracted from an opposite I variable or, if a cor-
responding [variable is less than this amount, it is assigned 0:

A

IA(t) = max(14(t) — Dp - E’O)

3.4 Flash swap operations

Flash swaps allow to perform token exchange even without holding tokens
for input, use the output and then return the input tokens to the pool. All
the above operations may be done in one atomic transaction. Inside the
operation Liquifi contract make a call to a user-specified callback contract
between output tokens transfer and checking the constant product invariant.
If after the call the invariant is not satisfied, the whole transaction is reverted.

3.5 Protocol fee

Liquifi protocol allows protocol fee to be enabled by governance (by default
protocol fee is disabled). Protocol fee is deducted from pool fees. Protocol
fee level can be adjusted by governance, but is limited to at most 25% of
pool fee. Protocol fee destination address is also specified by governance.

11

Protocol fee collection and sending. When swap operations are peer-
formed, protocol fee is kept in the pool together with liquidity provider fee.
For sake of gas economy, protocol fee is transferred to the destination ad-
dress only when operations with liquidity (deposit or withdraw) take place.
During these operations extra LPTX tokens are minted to fit protocol fee
amount and then transferred to the destination address.

Protocol fee calculation. According to [1] the total collected fees can be
calculated by the growth of factor vk = /7 - y. Accumulated fees between
time moments ¢; and ¢y as a share of the pool are given by:

fa—1- Y0
1,2 s
Protocol fee share is then ¢ - f12 where ¢ is protocol fee level defined by
governance.
Then, the number of LPTX tokens to mint for protocol fee s,, is defined by
equation:

M — % fia

Sm 1+ 81

where s; is total number of LPTX tokens at time ¢;.
Solving the equation for s,, we get:

S Vs = vk -8
"G VetVR

4 (Governance

Liquifi is governed by the community from the date of launch. Liquifi smart
contracts do not contain any code that could give anybody exclusive rights
to change or update the contracts or their parameters. Possible changes
are limited to be initiated by Liquifi governance smart contract only. These
changes may include adjusting pool parameters (e.g. liquidity provider fee),
upgrading to a newer version of the pool smart contract or replacing the
governance contract itself. But there is no way to modify LQF tokens minting
schedule or rules, so LQF token distribution is completely predictable.

12

4.1 Principles

e Governance is done by a community of LQF token holders

e LQF tokens will be minted with respect to participation in liquidity
pools and given to liquidity providers

Total supply of LQF tokens will be about 107M (see Implementation section
for details).

4.2 Tokens distribution

A predefined number of governance tokens will be minted every week. This
number will decrease every week with a predefined speed (decay factor). The
minted tokens will be automatically distributed among liquidity Providers
proportionally to their share in the total liquidity amount.

4.3 (Governable protocol parameters

The following parameters may be modified using Liquifi decentralized gover-
nance:

e Pool parameters

— Immediate and time-locked swap fee level for each pool (default -

0.3%)
— Protocol fee level for each pool (disabled by default)

— Maximun timeout for time-locked operations (default - 1 hour)

Maximum length of order wait lists (default - 100)

Pool locked flag (default - unlocked)
— Zero fee on/off (default - on)

e Parameters for all pools

— Protocol fee receiver (default - empty)

— Governance contract address (used to upgrade to newer versions
of governance)

e Governance parameters

13

— Liquifi pool factory (used to upgrade to newer versions of the
protocol)

— On-chain voting parameters (voting period, quorum, approval and
veto thresholds, deposit amount to create a proposal)

4.4 Communications

Event Schedule Participants
Core team sync call | Once in 2 weeks (online) | Core team
Liquifi status call Monthly (online) All community members

5 Implementation

Liquifi is a decentralized exchange based on liquidity pool. Core exchange
logic in implemented in smart contracts (which are open-source and exter-
nally audited) and processing is performed completely on-chain. This ap-
proach guarantees that all liquidity invested into Liquifi pools is kept safely
and is not vulnerable to theft or other attacks. This also ensures fair and
predictable exchange rates for digital asset traders and arbitrageurs.
Besides the smart contracts Liquifi also includes back-end and front-end com-
ponents. These components are not critical to exchange operation and may
be used or bypassed at wish. The main reasons of including these compo-
nents, other than user convenience, are:

e Gas economy. Part of operations needed to perform time-locked swap
operations, like scanning the history of orders in wait lists, is performed
off-chain and provided to the smart contract when needed. Using a
chain of hashes that are checked by the smart contract prevents mali-
cious users from providing forged data input.

e Model-based price prediction. Built-in simulation model provides cal-
culated predictions of expected exchange rate for time-locked opera-
tions. This model takes current wait list state and market situation as
inputs and includes expected arbitrageurs behavior. This allows Liquifi
to assist traders in selecting the most profitable operation parameters.

14

5.1 Architecture

Liquifi consists of the following components:
e Main Ethereum smart contracts

— Liquidity pool smart contract
— Factory smart contract

— Register smart contract

e Governance Ethereum smart contracts

ERC20 governance token (LQF) / Minter smart contract
— Activity meter smart contract

— Governance smart contract

— Proposal (voting) smart contract

— Governance router smart contract
e Off-chain service

— Support for reactive front-end operations

— Instant pool price calculation based on the wait list state

— Time-locked deal price prediction based on built-in simulation
model

e [Front-end

— Exchange UI
— Liquidity provider Ul
Governance Ul

Statistics dashboard

15

5.2 Implemented Logic of Key Components
5.2.1 Liquifi Pool Register

Liquifi pool register smart contract is a preferred entry point for any oper-
ation on the pools. Pool register relies on the pool factory smart contract
to keep track of all existing liquidity pools and to create new pools. Once
a pool is found or created, pool register delegates core operations to a lig-
uidity pool contract. Another function of pool register contract is wrapping
ETH to WETH when interacting with pools with WETH as one of tokens.
This feature allows users to directly use these pools with their ETH balances
without manual wrapping.

5.2.2 Liquidity Pool

Token pair registration Everybody can register a new pool for any token
pair if such a pool does not exist. Therefore, for each token pair only one
pool can be registered. When a user starts add liquidity transaction on a
non-existing pool, pool register delegates to pool factory actual creation of a
new liquidity pool smart contract.

Liquifi pool tokens Each liquidity pool smart contract implements ERC20
interface. This allows to mint special Liquifi pool tokens when liquidity
providers add liquidity to a pool. These tokens can be used as any normal
ERC20 token, including transferring them to other users. When a liquid-
ity provider wishes to withdraw his liquidity from a pool, he is required to
provide his Liquifi pool tokens from this pool, which are burnt during this
transction.

Liquidity providers can also use their Liquifi pool tokens to generate LQF
governance tokens as described below.

Liquifi pool tokens are named LPTX, where X is replaced by a sequential
number of a pool.

Liquifi pool exchange fee A default exchange fee value is assigned to a
new liquidity pool at creation. This fee value can be later changed by Liquifi
community via the governance process.

Adding liquidity to a pool Anybody can add liquidity to any pool and
become a liquidity provider. Liquidity is added by purchasing one or more

16

associated ERC20 pool tokens that are minted during this transaction. The
number of pool tokens minted is calculated as follows:

e For the first deposit in a pool (let Zgeposited A Yaepositea D€ the deposited
numbers of respective tokens in a pair):

Sminted = \/xdeposited * Ydeposited

To prevent the cost of minimal pool share (in theory) to grow extremely
high, Liquifi sends the first 107® pool shares to address 0 instead of the
liquidity provider. This cost is negligible for the provider but makes it
very hard to perform pool share growing attack.

e For next deposits

L deposited Ydeposited
(' Istartingy ' starting)
Tstarting starting

Sminted = man

The price of a Liquifi pool token consists of 2 components - for each ex-
changeable token in the pair - and is calculated by dividing the total pool
amount (for each token in the pair) by the number of all existing pool tokens.

Withdrawing liquidity from a pool Anybody holding Liquifi pool to-
kens can return them to the pool at any time. Returned tokens are burnt
and their price (amount of 2 tokens in the pair) is returned to the pool token
holder.

Pools that have ETH in a pair. For pairs with ETH Liquifi automat-
ically wraps/unwraps ETH operations with WETH tokens. So internally
these pools always contain WETH and not ETH, but this is transparent to
users. These pools also allow operations with WETH tokens directly.

Immediate swap operations Anybody can trade against token pairs in
any pool (become a Trader). To perform a swap operation a Trader sends
some tokens of type A to a liquidity pool smart contract and specifies the
worst case price that is acceptable (slippage tolerance). Deal price is calcu-
lated automatically (see Automatic Market Maker Model). If the calculated
price is acceptable for the Trader, the supplied tokens of type A are added to

17

the pool and a corresponding number of tokens of type B are removed from
the pool and sent to the Trader in one transaction. If the calculated price is
unacceptable, the supplied tokens of type A are sent back to the Trader.

Time-locked swap operations A Trader can provide an optional time-
out parameter for his deal and thus start a time-locked swap operation. A
liquidity pool smart contract maintains a wait-list that contains orders with
timeouts, sorted using 2 indices: by timeout expiration time and by stop
loss events time. Each order, besides timeout, contains stop loss limit price
P;; and temporary token balances for source tokens and swapped tokens so
far. When a new order is added, the source balance equals to the amount of
tokens to swap, the swapped balance is 0.

For every smart contract call, besides claiming an order result, before
the operation itself is performed, price recalculation procedure takes place:
starting from the saved last recalculation timestamp, calculate time interval
length until the earliest timeout expiration time or stop loss event time in
the wait-list. Calculate liquidity flow speed for all active orders within the
interval, multiply the speed on the interval length to get a partial swap
amount for each order, then sum the amounts separately for A/B and B/A
orders. Perform a partial deal maintaining x - y = k invariant, taking the
pool fee into account; the taken tokens are distributed among the orders
propotionally to swap amounts. If the swap price reaches stop loss limit for
some order P > Py, the corresponding order is closed immediately. The
source tokens that have not been exchanged yet, are returned to the Trader.

Orders for which the exchange is completed (by timeout expiration or by
reaching limit prices), are removed from the wait list and marked as ready
to claim.

5.2.3 Off-chain Service

Instant pool price calculation based on the wait list state Instant
value of pool exchange price depends on liquidity amounts in the pool. When
some time-locked operations are in place the liquidity is not fixed, but is
changing continueously as a function of liquidity flow speed and time. Be-
cause the smart contract is reactive and cannot perform instant pool price

18

recalculation without some party performing a transaction and paying gas,
Liquifi relies on the back-end service to perform this task.

Liquifi pool smart contracts provide complete pool state information to the
back-end service, including current token balances, liquidity flow speed and
order wait list. Using this information, the back-end service performs similar
calculations that the smart contract does, but without gas price. This allows
Liquifi users to always have up-to-date price and pool pressure information.

Time-locked deal price prediction based on built-in simulation model
Trader benefit from choosing to perform a time-locked swap operations in-
stead of an immediate swap depends on several factors:

e Current state of order wait list and pool pressure. This is known at
the moment when a trader starts a new operation and the effect of this
factor can be exactly calculated. For example, if there is already pool
pressure in the opposite direction, then a trader will get the best price
if properly selects his operation timeout.

e Arbitrage deals. Arbitrageurs may perform counter-deals (including
zero-fee deals) in parallel with trader’s time-locked operation, mak-
ing it more profitable. Though it depends on a priori unknown arbi-
trageurs stategy, this factor can be predicted based on some reference
arbitrageur model.

e Other trades. Some traders may want to perform their deals while our
time-locked operation is in progress. They can do this not regarding
the pool pressure and other factors. Therefore we cannot predict this
behavior (though some statistical model may be proposed later, when
enough data are captured).

e External markets. Generally we cannot predict price movements on ex-
ternal markets which can have impact on other traders and arbitrageurs
behavior. But some probabilistic model may be proposed.

In the current Liquifi implementation we take the first 2 factors into account,
i.e. current wait list state and arbitrageurs behavior, and simulate them in
our agent-based model (see a description of this model below). The model is
built into Liquifi back-end service and provides swap price estimations as a

19

functional of user input parameters: deal size and operation timeout. Run-
ning the simulation on different timeout values allow Liquifi to additionally
provide model-based recommendations for traders to select the best timeout
value to maximize the expected operation output. Liquifi exchange Ul shows
these estimations and recommendations to assist traders.

5.2.4 Statistics and historical data

Liquifi collects different types of statistical and historical data by monitoring
pool transactions and stores the data off-chain. The Graph protocol will be
used provide this

5.2.5 Governance operations

LQF tokens minting schedule. LQF tokens will be minted weekly. Af-
ter the first week (n = 0) of Liquifi operation a = 2500000 LQF tokens
will be minted. From the next week and on the number of LQF tokens
minted every week n will be decreased with decay factor r = (250 / 256),
week_lqf_minted = a - r™ Therefore, LQF minting schedule is an infinite
geometric progression and the sum of terms is given by:

— = 20090 — 106666666, 6(6)

256

S:

So the total number of LQF tokens minted will be about 107M.

Determining pool token weights. Only those pools that contain ETH
(WETH) in a pair participate in LQF tokens distribution. This limitation
is caused by the need of weighing pool shares when calculating an effective
user share in LQF distribution. We rely on token ratios in Liquifi pools with
ETH to get effective Liquifi pool token (LPTX) prices. When any Liquifi
pool detects changes in the ratio, it reports the new value to ActivityMeter
contract. ActivityMeter keeps the history of price changes and use these
values to calculate input of liquidity providers in ETH equivalent.

Governance tokens minting and distribution among liquidity providers
Every week newly minted LQF tokens are automatically distributed among
liquidity providers proportionally to their share in the total liquidity amount.

To calculate the share of each provider the following algorithm is used:

20

e Step 1: For each pool find an accumulated pool token price in ETH
equivalent multiplied by the time the price held according to the fol-
lowing procedure.

— At the beginning of a new week, the accumulated price value is
set to 0, price modify date is set to the beginning of the week.

— When a pool reports price change or the week ends, the accumu-
lated price is updated by (pool_token_price_in_eth * price_duration),
price modify date is set to the moment of the price change.

e Step 2: For each provider find an accumulated value of LPTX tokens
multiplied by the time of the tokens being staked in ActivityMeter
during the week according to the following procedure.

— At the beginning of a new week, the accumulated value is set to
0, modify date is set to the beginning of the week.

— When a deposit/withdraw operation occurs or the week ends,
the accumulated value is updated by (staked tokens number *
value_duration), modify date is set to the moment of the de-
posit/withdraw operation.

e Step 3: When the week ends, calculate average pool price for every
pool and average LPTX amount for each provider by dividing the ac-
cumulated values by week seconds.

e Step 4: Calculate staked liquidity value for each provider by summa-
rizing average LPTX_amount * average_pool_price for every pool.

e Step 5: When the second week ends, calculate the sum of staked lig-
uidity values for all providers

e Step 6: Number of LQF tokens that a provider gets is (staked_liquidity_value
/ total_staked_liquidity _value) * week_lqf_minted

Note that shares of all providers must be known to the contract to calculate
the final number of LQF tokens to handle. That is why Liquifi requires that
liquidity providers claim there LQF tokens every week. If claimed at week n,
the claim will return LQF tokens for week (n-2) and calculate the provider’s
share for week (n-1). If some provider skips a week without claiming, his
share will not be accounted in this week distribution. The provider will still

21

be able to claim his tokens later, but they will be accounted in the week before
the week of claim. The provider will get less LQF tokens if he skips a week
because his share will not be accounted in the previous week distribution.

Governance process Liquifi community-based governance is performed
by submitting proposals and voting for or againts them by LQF token holders.
Liquifi supports on-chain and off-chain voting procedures.

On-chain voting is performed within Liquifi governance smart contract.
This is the most reliable way of voting and allows to automatically execute
some kinds of decisions by the smart contract without human interaction.
The downside of on-chain voting are gas costs involved in performing smart-
contract transactions. Therefore, Liquifi will use on-chain voting only for
several types of decisions: changing pool fees, changing voting parameters
(acceptance and quorum thresholds), replacing the governance smart con-
tract itself with a newer version.

On-chain voting procedure is as follows:

e Each governance token holder can initiate change or feature request,
providing enough tokens to pass deposit threshold

e The governance tokens used to initiate the request are locked for the
duration of decision process

e Each governance token holder can vote for the request

e If decision voting is passed, or no quorum, or all abstain - the locked
tokens are returned to the initiator

e If decision voting is rejected - the locked tokens are not returned to the
initiator

Note on governance smart contract replacing. Obviously the strongest
on-chain governance decision is changing the governance smart contract. This
can in the future lead to significant changes in Liquifi governance, including
removing the possibility to change the governance smart contract or even
disabling on-chain governance at all. Liquifi leaves this possibility taking
into account that not every future issue may be foreseen now. As no cen-
tralized party, including Liquifi founders, is allowed to perform this without

22

community voting, we believe that this is a fair tradeoff between governance
predictability and flexibility. But nevertheless, there are components that
can never be changed. These are LQF token minting algorithm and liquidity
providers activity meter. Protecting these mechanisms from change gives
LQF token holders guarantee that their tokens will never loose their value as
the only method of Liquifi governance.

Off-chain voting will also require possession of LQF tokens, but will not
involve smart contract transactions and related gas costs. Instead, Liquifi
will rely on Snapshot protocol, which is widely used by DeFi projects, as an
off-chain governance implementation. Snapshot protocol will guarantee that
only LQF token holders can make proposals and vote for them. Decisions
made by off-chain voting may include development of new Liquifi protocol
features, selecting development team, etc.

6 Evaluation

6.1 Agent-based simulation

Problem definition We perform simulation modeling to obtain experi-
mental data on how our AMM will perform in conditions close to real. We use
simulated Liquifi smart contracts to perform swap and liquidity add/remove
operations. We also simulate markets to investigate model behavior when to-
ken prices change. We create actor models (liquidity providers, arbitrageurs,
traders) to simulate user activity based on the models published in [2].

6.1.1 Market simulation

Liquifi market When performing a swap operation of token B for token
A, constant product market model is applied:

(Ra— Au)(Rp+7Ap) =k

where R4, Rp are initial reserves of tokens A and B in the pool, R4-Rp = k,
A4, Ap are amounts of exchanged tokens, (1 —) is pool fee.

When a long swap operation with timeout is performed, according to Liquifi
AMM model this operation may be split in several smaller operations, allow-
ing for other operations to be performed in parallel.

23

When adding liquidity to a pool, agent must add a pair of tokens in the
same proportion that is currently in the pool. When adding Ag tokens B
and RyAp/Rp tokens A, the agent will be awarded by Liquifi pool tokens

Ap
App=—Rrp

where Rpp is the total amount of outstanding pool tokens given by the
contract.

Reference market The reference market follows a simple power law model
where the price m, of some token A, is updated in the following way:

1+¢
my, — my + KA,

where Kk > 0 and £ > 0 are given in the problem data.
We additionally update the market price every time step (after all agents
have completed their actions) in the following way:

Lo X+p
mp — mp €

where X N(0,1) is drawn from a normal distribution and p, 0 € R represent
the mean returns and volatility of the market when no trades are performed.

6.1.2 Agent simulation

Arbitrageurs Arbitrageurs perform trades between the Liquifi market and
a reference market when prices differ. They solve the following optimization
problem:

Mazra, A, MpAs— Ap — f(Aa,Ap)

(Ra— Aa)(Rp +7Ap) =k
AA? AB Z O
We use a simle quadratic cost of risk model:
PA PB

f(AA, Ap) = ?AZ + TAQB
Setting parameters p4, pg we can control the appropriate level of risk for
arbitrageurs.
If there is pool pressure that can make the price more profitable for arbitrage,
an arbitrageur will wait for a random time interval and then perform the
trade.

24

Liquidity providers We model liquidity providers who begin the simula-
tion by providing some amount of tokens A and B to the pool and seek to
gain profits by taking fees from Liquifi trades. We assume these liquidity
providers will not withdraw their position until the end of the simulation.

Traders A trader seeks to trade some amount A4 token A for some second
amount A g of token B (or vice versa), so long as the price of trading tokens on
Liquifi differs no more than a constant percentage off from the same trade in
the reference market. The trader will draw A 4 (or Ag) from some probability
distribution and check if performing this trade in the Liquifi market is at most
some percentage more expensive than performing it in the reference market.
If not — i.e., if the agent is able to trade with Liquifi for a reasonable price
— then the agent makes the trade using the Liquifi contract. Otherwise, no
trade is performed.

The trader also picks a random timeout for the swap operation (between 5
and 60 minutes) to perform a long swap and get a better price.

6.1.3 Simulation results

To investigate the behavior of Liquifi market in different conditions we per-
formed several series of simulation experiments with varying reference mar-
ket price and different states of wait lists in Liquifi smart contract. For each
combination of factors we simulated the same sample time-locked swap op-
eration and registered Liquifi price changes as well as the final output of the
operation.

Reference market conditions. Using our reference market model, we
considered three different cases that can be significant for our model behavior:

1. Upward trend
2. Downward trend

3. Negligible price changes

Wait list conditions. We considered initial wait list configuration with
orders that have timeouts higher than an incoming new order and three
different pool pressure values:

25

1. Positive pool pressure, i.e. A to B liquidity flow speed is greater than
B to A liquidity flow speed (S5’ > S%)

2. Negative pool pressure, i.e. A to B liquidity flow speed is less than B
to A liquidity flow speed (S’ < S%)

3. Zero pool pressure, i.e. A to B liquidity flow speed is equal to B to A
liquidity flow speed (S = S%3) or the wait list is empty

0 200 400 600 80 1000
Time (s)

Figure 1: Upward trend with an opposite order

0 200 400 600 800 1000

rrrrrr

Figure 2: Upward trend with an order in the same direction

Initial data. For each of the simulation experiments we took the following
initial parameters:

e Ininital amount of tokens A in the pool zy = 10000
e Initial amount of tokens B in the pool yo, = 1000000

e Fee a =0.003,y=1—a=0.997

26

~=- Min reference market price -
==~ Max reference market price s
==~ Reference market price

— Liquifi price

0 200 400 600 800 1000
Time (s)

Figure 3: Upward trend with empty wait list

=== Min reference market price
~-- Max reference market price
~=-- Reference market price

— Liquifi price

100

0 200 400 600 800 1;00
Time (s)
Figure 4: Downward trend with an opposite order

100 === Min reference market price
—=- Max reference market price
=== Reference market price

9% = Liquifi price

9%

Time (s)

Figure 5: Downward trend with an order in the same direction

e Minimum interest of an arbitrageur to perform a deal R,,;, = 0.1 of

tokens A

e Sample time-locked swap operation: swap N4 = 100 tokens A for to-

kens B with timeout 1000 seconds

e Number of simulations for each scenario N = 50

27

100 ~ ==~ Min reference market price
= -~ Max reference market price
=== Reference market price
9 — Liquifi price
9%
y 97
£
9%
9%
94
93
0 200 400 600 800 1000
Time (s)
Figure 6: Downward trend with empty wait list
100.6
1004
100.2
100.0
.
g 98
96
94
N VRS ~==- Min reference market price
%2 L. o === Max reference market price
T A === Reference market price
@0 T —— Liquifi price
0 200 400 600 800 1000
Time (s)
Figure 7: No trend with an opposite order
=== Min reference market price
1000 1/ ___ Max reference market price
=== Reference market price
100.5 [N
.
iy
1000 I
;
95 B
9.0
o 200 400 600 800 1000
Time (s)

Figure 8: No trend with an order in the same direction

Reference output. As a reference value for expected deal output we take

the number of tokens returned by an immediate swap using standard constant
product formula:

ToYo

———— = 9871.58
To + N4

Np, =Yo —

Model output.

1. Upward trend and there is an opposite order in the wait list to swap

28

[} 200 400 600 800 1000
Time (s)

Figure 9: No trend with empty wait list

14000 tokens B for tokens A. Model output: 10320.69.

2. Upward trend and there is an order in the same direction in the wait
list to swap 140 tokens A for tokens B. Model output: 10303.04.

3. Upward trend and the wait list is empty. Model output: 10310.54.

4. Downward trend and there is an opposite order in the wait list to swap
14000 tokens B for tokens A. Model output: 9635.18.

5. Downward trend and there is an order in the same direction in the wait
list to swap 140 tokens A for tokens B. Model output: 9628.53.

6. Downward trend and the wait list is empty. Model output: 9624.95.

7. No trend and there is an opposite order in the wait list to swap 14000
tokens B for tokens A. Model output: 9987.71.

8. No trend and there is an order in the same direction in the wait list to
swap 140 tokens A for tokens B. Model output: 9925.84.

9. No trend and the wait list is empty. Model output: 9953.27.

Dicussion. As we can see, the only situation when the simulated time-
locked operation produces less output than an immediate swap is a strong
downward trend on a reference market. This could happen when some fun-
damental factors influence the reference market and therefore time-locked
operations are not recommended in this case. In other cases (actually, most
of the time) time-locked operations produce better output than immediate
swaps. This is true even if there is already pool pressure in the same direction

29

which negatively influences the price. Arbitrage deals performed in parallel
with the time-locked operation compensate these negative price movements.

References

[1] Hayden Adams, Noah Zinsmeister, and Dan Robinson. Uniswap v2 core.
https://uniswap.org/whitepaper.pdf.

[2] Guillermo Angeris, Hsien-Tang Kao, Rei Chiang, Charlie Noyes, and
Tarun Chitra. An analysis of uniswap markets. Cryptoeconomic Sys-
tems Journal, 2019.

Disclaimer

This paper is for general information purposes only. It does not constitute
investment advice or a recommendation or solicitation to buy or sell any
investment and should not be used in the evaluation of the merits of making
any investment decision. It should not be relied upon for accounting, legal
or tax advice or investment recommendations.

30

