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Abstract

The Grøstl hash function is a finalist in the SHA-3 competition organized by NIST. In this paper,
we describe a number of implementation techniques and tricks for Grøstl. They allow us to develop a
range of efficient implementations for various platforms, from 8-bit microcontrollers to modern desktop
processors using 256-bit AVX instructions. These results demonstrate the implementation flexibility
of the algorithm and we hope will inspire further optimizations and ports to other platforms. The
information in this paper will also be useful for developers planning to implement Grøstl efficiently on
the platform of their choice. Furthermore, we believe also hardware implementations may benefit from
the optimization techniques presented in this paper.

1 Introduction

The hash function Grøstl was designed in 2008 as a candidate for the SHA-3 competition [18], organized
by the National Institute of Standards and Technology (NIST). In 2010, Grøstl was selected as one of five
finalists in the competition.

Grøstl borrows components from the AES block cipher, which became a United States federal government
standard in 2001 [17]. The AES is known for its good performance on a wide variety of platforms, which is
due to a large amount of flexibility in the choice of implementation methods. Recently, Intel introduced an
instruction set extension for computing AES rounds [9], which makes encryption using the AES on CPUs
implementing this instruction set very efficient.

Although several underlying components in Grøstl differ from the ones used in the AES, Grøstl still
enjoys many of the same implementation benefits as the AES. Even the AES instruction set extension can be
used to significantly speed up Grøstl. In this paper, we describe various software implementation techniques
for Grøstl suitable for platforms ranging from 8-bit microcontrollers to processors with SIMD and AES
instruction set extensions. All these implementations can be downloaded from http://www.groestl.info/.

2 Description of Grøstl

The Grøstl hash function iterates an underlying compression function in a variant of the Merkle-Damg̊ard
construction [7, 15], where the size of the state (or chaining value) passed on from one iteration to the next
is at least twice as large as the final hash value. The final hash value is computed from the last chaining
value using an output transformation. Hence, Grøstl is known as a wide pipe design.

The compression function and the output transformation are based on permutations using round trans-
formations similar to those of the AES [16]. For the final round of the competition, Grøstl was tweaked in
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order to increase its security margin. The initial submission is called Grøstl-0. In the following, we describe
the components of the (tweaked) Grøstl hash function in more detail.

2.1 The Hash Function

Grøstl comes in several variants with different output sizes. We denote by n the number of bits in the
output, and the variant returning n bits is denoted Grøstl-n. Here, we focus on Grøstl-256 and Grøstl-
512. Variants returning less than 256 bits differ from Grøstl-256 only in the initial value and in the final
truncation to produce the hash value. Similarly, variants returning more than 256 bits differ from Grøstl-512
in the same two respects.

The input message M is padded and split into blocks M1,M2, . . . ,Mt of ` bits with ` = 512 for Grøstl-
256, and ` = 1024 for Grøstl-512. The initial value IV , the intermediate hash values Hi, and the permuta-
tions P and Q are of size ` bits as well. (The exact definition of the IV can be found in [8]). The message
blocks are processed via the compression function f(Hi−1,Mi), which accepts two `-bit inputs and outputs
an `-bit value. After all t message blocks have been processed, an output transformation Ω(Ht) is applied
which outputs the final n-bit hash value h:

H0 = IV

Hi = f(Hi−1,Mi) for 1 ≤ i ≤ t
h = Ω(Ht).

For all variants, ` is at least twice as large as n.

2.2 The Compression Function

The compression function f is based on two `-bit permutations P and Q. The compression function is
defined as follows:

f(Hi−1,Mi) = P (Hi−1 ⊕Mi)⊕Q(Mi)⊕Hi−1.

The construction of the compression function of Grøstl is shown in Figure 1.

f

Hi−1
`

Hi
`

P

QMi
`

Figure 1: The compression function f of Grøstl. The permutations P and Q are of size ` ≥ 2n bits.

2.3 The Output Transformation

After the last call to the compression function, an output transformation Ω is applied to Ht to give the final
hash value of size n:

Ω(Ht) = truncn(P (Ht)⊕Ht),

where truncn(x) discards all but the least significant n bits of x. The output transformation is also shown
in Figure 2.
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Ht
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Figure 2: The output transformation Ω of Grøstl. The permutation P is of size ` ≥ 2n bits and only the
last n bits are returned.

2.4 The Permutations

Two permutations P and Q are defined for Grøstl. To distinguish between the permutations of Grøstl-256
and Grøstl-512 we sometimes write P` or Q` where ` is the size of the permutations. In each permutation, the
four AES-like round transformations AddRoundConstant (AC), SubBytes (SB), ShiftBytes (SH), and MixBytes
(MB) are applied to the state in the given order. The permutations differ only in the constants used in
AddRoundConstant and ShiftBytes, and in their number of rounds.

Grøstl-256 has 10 rounds and the 512-bit state of permutation P512 and Q512 is viewed as an 8×8 matrix
of bytes. One round of one permutation of Grøstl-256 is shown in Figure 3. For Grøstl-512, 14 rounds are
used and the 1024-bit state of the two permutations P1024 and Q1024 is viewed as an 8× 16 matrix of bytes.

AC
SB
SH
MB

(a) Grøstl-256

AC
SB
SH
MB

(b) Grøstl-512

Figure 3: One round of one permutation of the Grøstl-256 and Grøstl-512 hash function.

2.4.1 AddRoundConstant

The AddRoundConstant (AC) transformation XORs a round-dependent constant to one row of the state. The
constant and the row is different for P and Q. Additionally, a round-independent constant ff is XORed to
every byte in Q (we denote hexadecimal byte values by two-character values in sans serif font). The XOR
constants for round i (where i is viewed as a hexadecimal digit and ī denotes the bit-wise complement of i)
are shown in Figure 4.

2.4.2 SubBytes

The SubBytes (SB) transformation applies the AES S-box to each byte of the state. The definition of this
S-box can be found in [8].

2.4.3 ShiftBytes

ShiftBytes (SH) cyclically rotates the bytes of row r to the left by σ[r] positions with different values for P
and Q in Grøstl-256 and Grøstl-512. We have the following rotation values:

σ = {0, 1, 2, 3, 4, 5, 6, 7} for P in Grøstl-256

σ = {1, 3, 5, 7, 0, 2, 4, 6} for Q in Grøstl-256

σ = {0, 1, 2, 3, 4, 5, 6, 11} for P in Grøstl-512

σ = {1, 3, 5, 11, 0, 2, 4, 6} for Q in Grøstl-512
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(d) Q1024

Figure 4: The XOR constants added by the AddRoundConstant transformation.

S(x)

Figure 5: SubBytes substitutes each byte of the state using the AES S-box.

2.4.4 MixBytes

MixBytes (MB) is a linear diffusion layer, which multiplies each column A of the state with a constant,
circulant 8× 8 matrix B:

A← B ·A
where

B =



02 02 03 04 05 03 05 07
07 02 02 03 04 05 03 05
05 07 02 02 03 04 05 03
03 05 07 02 02 03 04 05
05 03 05 07 02 02 03 04
04 05 03 05 07 02 02 03
03 04 05 03 05 07 02 02
02 03 04 05 03 05 07 02


. (1)

In this matrix B, constants are elements in the finite field GF (28) defined by the polynomial θ8 ⊕ θ4 ⊕
θ3 ⊕ θ ⊕ 1. An 8-bit value x with binary representation

x = x7 · 27 + x6 · 26 + x5 · 25 + x4 · 24 + x3 · 23 + x2 · 22 + x1 · 21 + x0 · 20

is then represented by the following polynomial in the finite field GF (28):

P (x) = x7 · θ7 + x6 · θ6 + x5 · θ5 + x4 · θ4 + x3 · θ3 + x2 · θ2 + x1 · θ1 + x0

The multiplication x ·y in the field GF (28) is defined by a polynomial multiplication modulo the polynomial
defining the field:

x · y = P (x) · P (y) mod (θ8 ⊕ θ4 ⊕ θ3 ⊕ θ ⊕ 1)

Section 4.4 describes how the multiplications in this field are carried out efficiently in practice.
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(a) P512 (b) P1024

(c) Q512 (d) Q1024

Figure 6: The shift values used by the ShiftBytes transformation.

B

Figure 7: The MixBytes transformation multiplies each column of the state by a constant matrix B.

3 Introduction to Efficient Implementation Techniques

In this section we give a high-level overview on common efficient implementation techniques for Grøstl.
Since Grøstl is an AES-based hash function, most implementation techniques developed for AES can be
applied to Grøstl as well. The main implementation techniques for Grøstl are the T-table implementation,
bit slicing, and byte slicing. In a parallel byte slice implementation, either the Intel AES-NI instruction or
the vperm technique can be used to compute the AES S-box.

In Table 1 we list some benchmark results of Grøstl on current desktop processors. For details on more
processors we refer to eBASH [3]. Additionally, the byte slice implementation technique has also been used
to get efficient 8-bit implementations of Grøstl. Table 2 shows some time-memory trade-offs for 8-bit AVR
implementations.

3.1 T-Table Implementation

Daemen and Rijmen have presented a table-based approach for AES in [6], which efficiently computes
the combined SubBytes and MixColumns transformation. The same approach can be applied to Grøstl.
Using this technique, at least one table lookup is needed for each S-box. The MixBytes transformation is
computed in parallel for rows of the state and can be combined with the S-box lookup. This approach is
most efficient if the column size matches the register size. This is the case on 32-bit platforms for AES and
on 64-bits platforms for Grøstl. Since many current and future small-scale 32-bit processors also provide
64-bit instructions (MMX, NEON), Grøstl can be implemented very efficiently on these platforms using the
T-table approach.

In T-table implementations, the state of Grøstl is stored in 64-bit registers in column ordering (see
Figure 8). The AddRoundConstant transformation can be computed separately using 64-bit XORs. The
computation of the SubBytes, ShiftBytes and MixBytes transformations are combined to efficiently compute
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Table 1: Grøstl software performance on current desktop processors sorted by their speed in cycles/byte
(c/b). The byte slice implementations using AES-NI or vperm outperform table-based implementations on
processors with 128-bit registers.

Hash function Processor Speed (c/b) Technique

Grøstl-256

Intel Core i7-2600K 11.5 AES-NI
AMD Phenom II X6 19.4 T-tables

Intel Core2 Duo L9400 20.4 (22.5) vperm (T-tables)
Intel Core i7 620LM 23.3 (24.0) vperm (T-tables)

Intel Pentium M 38.8 T-tables
Grøstl-0-256 Intel Core2 Duo L9400 29.7 bit slicing

Grøstl-512

Intel Core i7-2600K 15.6 AES-NI
Intel Core2 Duo L9400 28.9 (37.4) vperm (T-tables)
AMD Phenom II X6 31.7 T-tables
Intel Core i7 620LM 33.4 (37.7) vperm (T-tables)

Intel Pentium M 76.1 T-tables

Table 2: Speed of three different Grøstl-256 8-bit AVR implementations in cycles/byte on ATMega163.

HighSpeed Balanced LowMem
Grøstl 469 530 -
Grøstl-0 456 517 738
RAM 994 226 164

one 64-bit column (e.g., column 0) of Grøstl as follows:

b00
b10
b20
b30
b40
b50
b60
b70


=



02 02 03 04 05 03 05 07
07 02 02 03 04 05 03 05
05 07 02 02 03 04 05 03
03 05 07 02 02 03 04 05
05 03 05 07 02 02 03 04
04 05 03 05 07 02 02 03
03 04 05 03 05 07 02 02
02 03 04 05 03 05 07 02


·



S(a00)
S(a11)
S(a22)
S(a33)
S(a44)
S(a55)
S(a66)
S(a77)


where b0 = [b00, b10, · · · , b70]T is the resulting 64-bit value of the first column computation. The input bytes
aij are extracted from the state according to the ShiftBytes transformation and the S-box S(x) is applied to
these bytes prior to the matrix multiplication of MixBytes. Expanding the matrix multiplication then gives:

b00
b10
b20
b30
b40
b50
b60
b70


=



02 · S(a00)
07 · S(a00)
05 · S(a00)
03 · S(a00)
05 · S(a00)
04 · S(a00)
03 · S(a00)
02 · S(a00)


⊕



02 · S(a11)
02 · S(a11)
07 · S(a11)
05 · S(a11)
03 · S(a11)
05 · S(a11)
04 · S(a11)
03 · S(a11)


⊕



03 · S(a22)
02 · S(a22)
02 · S(a22)
07 · S(a22)
05 · S(a22)
03 · S(a22)
05 · S(a22)
04 · S(a22)


⊕



04 · S(a33)
03 · S(a33)
02 · S(a33)
02 · S(a33)
07 · S(a33)
05 · S(a33)
03 · S(a33)
05 · S(a33)


⊕



05 · S(a44)
04 · S(a44)
03 · S(a44)
02 · S(a44)
02 · S(a44)
07 · S(a44)
05 · S(a44)
03 · S(a44)


⊕



03 · S(a55)
05 · S(a55)
04 · S(a55)
03 · S(a55)
02 · S(a55)
02 · S(a55)
07 · S(a55)
05 · S(a55)


⊕



05 · S(a66)
03 · S(a66)
05 · S(a66)
04 · S(a66)
03 · S(a66)
02 · S(a66)
02 · S(a66)
07 · S(a66)


⊕



07 · S(a77)
05 · S(a77)
03 · S(a77)
05 · S(a77)
04 · S(a77)
03 · S(a77)
02 · S(a77)
02 · S(a77)



6



which simplifies to

b0 =T0(a00)⊕ T1(a11)⊕ T2(a22)⊕ T3(a33)⊕ T4(a44)⊕ T5(a55)⊕ T6(a66)⊕ T7(a77)

where the tables y = Ti(x) contain 8 to 64-bit lookups of the S-box together with the 8 multipliers of
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Figure 8: For the T-table approach, the Grøstl-256 state is stored column-wise in 64-bit registers.

MixBytes. For example, for the first table T0 we get:

T0(x) = 02 · S(x) ‖ 07 · S(x) ‖ 05 · S(x) ‖ 03 · S(x) ‖ 05 · S(x) ‖ 04 · S(x) ‖ 03 · S(x) ‖ 02 · S(x)

Extracting a single byte from a word can be implemented using a bit-shift and a masking (logical and)
instruction. Then, the computation of one column consists of only 8 table lookups, 8 XOR (7 XOR for MB,
1 XOR for AC), 8 SHIFT and 8 AND instructions. On some platforms, single bytes aij can be extracted
from 64-bit column words aj = [a00, a10, . . . , a70]T at no cost. In this case, we can save (some of) the SHIFT
and AND instructions.

The same T-table approach can also be used for efficient implementations on 32-bit processors. In this
case, we split up the computation into an upper part and lower part. We need to split up the tables Ti into
one table T ′i storing the upper 32 bits and one table T ′′i storing the lower 32 bits. Due to the cyclic structure
of the MixBytes transformation matrix, the tables T ′i can be reused to lookup also the lower 32 bits since we
have T ′′i = T ′(i+4) mod 8. Hence, we get

b′0 =T ′0(a00)⊕ T ′1(a11)⊕ T ′2(a22)⊕ T ′3(a33)⊕ T ′4(a44)⊕ T ′5(a55)⊕ T ′6(a66)⊕ T ′7(a77)

b′′0 =T ′4(a00)⊕ T ′5(a11)⊕ T ′6(a22)⊕ T ′7(a33)⊕ T ′0(a44)⊕ T ′1(a55)⊕ T ′2(a66)⊕ T ′3(a77)

with b0 = b′0‖b′′0 .

3.2 Byte Slice Implementation

Another option to implement Grøstl is a byte-wise parallel computation of columns. All round transforma-
tions except ShiftBytes and AddRoundConstant apply exactly the same computation to each column of the
Grøstl state independently. Therefore, we can use a Single Instruction Multiple Data (SIMD) approach to
compute these identical operations on more than one column at the same time. We call this a byte slice
implementation [1] since the Grøstl state is cut into column slices of bytes. The state is stored in row
ordering. Using w-bit registers, w/8 columns can be computed in parallel (see Figure 9). This approach is
most efficient for small (8-bit) and large register sizes (128-bit and more).

A requirement for this approach to be efficient is that all round transformations of Grøstl can be
parallelised using only a few w-bit SIMD instructions. AddRoundConstant and MixBytes can be computed
in parallel simply using basic ALU instructions. For ShiftBytes we need a byte shuffling instruction or some
mask and rotate instructions. The most difficult round transformation to parallelise is the 8-bit table lookup
of SubBytes. However, using the Intel AES New Instructions extension (AES-NI) [12] or the vector-permute
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Figure 9: For the SIMD implementation, the Grøstl-256 state is stored row-wise in xmm registers to compute
each column 16 times in parallel.

(vperm) approach of Hamburg [10], parallel AES S-box table lookups can be performed efficiently. Moreover,
the fastest Grøstl implementation [3] is a byte slice implementation using AES-NI. For further details, on
how the round transformations can be implemented, we refer to Section 4.

In a byte slice implementation, we need to use a row-ordering of the Grøstl state. However, the input
bytes of the message are mapped to the Grøstl state in column-ordering. The column-ordering is a benefit
for T-table based implementations but a drawback for byte slice implementations. To reduce the state
transformation costs, the internal state is kept in row-ordering throughout the whole computation. Then,
we only need to transform each input message block and the hash function output at the end (the IV can
be stored already in row-ordering). Transforming the input message from column-ordering into row-ordering
corresponds to transposing the state matrix of the input message block. Many algorithms for transposing a
matrix are known and a square matrix can be transposed using only a few instructions.

3.3 Bit Slice Implementation

The fastest AES software implementations are bit slice implementations running at 7.6 cycles/byte on an
Intel Core2 if multiple blocks are encrypted in parallel in counter mode [14]. Also the hash function Whirlpool
which shares some similarities to Grøstl has been implemented efficiently using bit slicing techniques in [20].
Preliminary assembly implementations of Grøstl-0 show a speed of 29.7 cycles/byte on an Intel Core2 Duo
processor for the computation of the hash of a single message [21]. Additionally, bit slice implementations
of Grøstl-0 get even more efficient if two or more messages are hashed in parallel [4].

4 Implementing Grøstl Round Transformations

In this Section we list common techniques to efficiently implement the individual Grøstl round transforma-
tions. The listed techniques can be used on various platforms using different word sizes, as well as in hardware
and in software. In most cases also special optimization techniques which combine round transformations
may lead to better results on some platforms (also see Sections 5, 3.2 and 3.3).

4.1 AddRoundConstant

The AddRoundConstant transformation consists of XORs of bytes in the state with constants. In most cases,
these constants will be stored using the same data structures and ordering conventions as the state itself, in
which case the XORs are simply carried out word by word.

One may exploit the fact that the constants used in Q correspond to a complementation of each byte,
followed by an XOR with the same constants as those used in P . Note, however, that in Q, these constants
are XORed to the bottom row instead of the top row (as in P ).

4.2 SubBytes

The SubBytes transformation is most simply implemented as an 8-bit table lookup.

8



However, since the transformation corresponds to an inversion in the finite field GF (28) followed by an
affine transformation, in some scenarios it is more efficient to implement it via a computation. The most
efficient known way to compute the AES S-box is using the formulas of Canright [5]. Originally developed
for compact hardware implementations, Canright’s formulas can also be used for the efficient computation
of the AES S-box in software. The fastest known AES implementation uses these formulas to compute the
S-box in bit slice mode [14].

A second efficient method to compute the AES S-box has been proposed by Hamburg in [10]. In this
approach, the inverse in GF (28) of the AES S-box is computed using small log tables of the finite field
GF (24). Small log tables can efficiently be implemented using byte shuffling instructions. Using registers
containing 16 bytes, a 4-to-8 bit table lookup can be performed. For more details on this implementation
we refer to the original publication [10].

The third possibility to compute SubBytes is using the Intel AES New Instructions extension (AES-NI)
to the x86 instruction set [9]. This extension includes a number of instructions for computing AES rounds.
The instruction AESENCLAST, as an example, computes the last round of AES (without any key additions),
which means it computes the transformations SubBytes and ShiftRows. Hence, if this instruction is available,
it can be used to compute parallel AES S-box lookups. To reduce the number of byte shuffling instructions,
the computation of ShiftRows in AESENCLAST can be combined with the computation of ShiftBytes.

4.3 ShiftBytes

The ShiftBytes transformation simply moves bytes around within a row. Hence, this transformation can
often be computed implicitly by simply changing the addressing of bytes. An implementation on a modern
desktop processor might store rows of the state as a 64-bit or 128-bit word. In this case, the ShiftBytes
transformation can be implemented via a simple byte shuffling instruction.

4.4 MixBytes

MixBytes consists of a multiplication of each column in the state by a constant 8 × 8 matrix B. All multi-
plications and additions needed to compute this transformation are done in the finite field GF (28) defined
by the polynomial θ8 ⊕ θ4 ⊕ θ3 ⊕ θ ⊕ 1 (11b in hexadecimal notation). There are many ways to compute
MixBytes and it depends on the hardware and CPU features which variant is most efficient. In the following,
we explain the most important techniques.

4.4.1 Table-based Implementation

The most efficient way to implement MixBytes is using precomputed T-tables (also see Section 5). Especially
since in this case, the table lookups for MixBytes can also be combined with those of the S-box. In the
T-table approach, the effect of each state byte on one column (8 bytes) is precomputed and stored in a table
of 256 64-bit entries. For each input byte of one column, we need a separate table. Then, e.g. the first
column can be computed as follows:

b0 = T0(a00)⊕ T1(a11)⊕ T2(a22)⊕ T3(a33)⊕ T4(a44)⊕ T5(a55)⊕ T6(a66)⊕ T7(a77)

where the tables y = Ti(x) contain 8 to 64-bit lookups of the S-box together with the 8 multipliers of
MixBytes. Table T0 is precomputed as follows:

T0(x) = 02 · S(x) ‖ 07 · S(x) ‖ 05 · S(x) ‖ 03 · S(x) ‖ 05 · S(x) ‖ 04 · S(x) ‖ 03 · S(x) ‖ 02 · S(x)

Using this method, one column of MixBytes including one column of SubBytes can be computed using only
8 table-lookups and 7 64-bit XOR operations.

However, we need more instructions for ShiftBytes since byte values have to be extracted from 64-bit
words. Furthermore, the T-table approach is not resistant against cache-timing and table lookups are still
the bottleneck on most current processors.
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4.4.2 Using Double-and-Add

MixBytes can also be computed using repeated double-and-add operations. Then, we only need to XOR
and efficiently multiply by 02 (see Section 4.4.3). For example, the multiplication by 05 can then be carried
out by performing 02 · (02 · x) + x. Using only double-and-add operations, we get the following formulas to
compute each output byte bi given the input bytes ai of a single column:

bi = 02 · (02 · (ai+3 ⊕ ai+4 ⊕ ai+6 ⊕ ai+7)⊕ ai ⊕ ai+1 ⊕ ai+2 ⊕ ai+5 ⊕ ai+7)⊕ (2)

ai+2 ⊕ ai+4 ⊕ ai+5 ⊕ ai+6 ⊕ ai+7

where i = 0, . . . , 7 and all the indices are taken modulo 8. Simply implementing this formula would require
8 · 2 = 16 multiplications by 02 and 8 · 13 = 104 XORs. However, the number of XORs can be significantly
reduced to at least 48 (see Section 4.4.4 and Section 4.4.5).

4.4.3 The Multiplication by 02

In the finite field GF (28), the doubling operation 02 ·x (where x is an 8-bit value) can be implemented using
a left shift of x by one, followed by a conditional XOR using the irreducible polynomial 11b if an overflow
occurs. When operating on bytes, the MSB is usually discarded by the shift. Hence, we first check whether
the MSB is set and conditionally XOR the constant 1b after the shift. It is worth to note that in some cases
the condition can also be checked efficiently by treating the byte as a signed value and comparing it to zero.
If two’s complement representation is used, the most significant bit is only set if the value x is negative.

4.4.4 Minimising the Number of XORs

By taking a look at Equation 2, we can observe that there are many terms of the form ai⊕ai+1. By repeatedly
computing temporary results in a tree-based form, we get an optimised way of computing MixBytes using
the following set of formulas:

xi = ai ⊕ ai+1,

yi = xi ⊕ xi+3,

zi = xi ⊕ xi+2 ⊕ ai+6,

bi = 02 · (02 · yi+3 ⊕ zi+7)⊕ zi+4 .

(3)

These formulas contain a minimum number of 16 multiplications by 02 and only 8 · 6 = 48 XOR operations.
Furthermore, the computations are more independent, which allows a better parallelism on superscalar
CPUs. For example, computing xi is independent from any other xj where i 6= j and the same is true for
the remaining temporary and final values.

4.4.5 Computing the Multiplication by 02 First

Sometimes (see Section 6.3), it can be more efficient to first compute the multiplication by 02 and 04 of all
input values ai:

bi = ai+2 ⊕ ai+4 ⊕ ai+5 ⊕ ai+6 ⊕ ai+7⊕
02 · ai ⊕ 02 · ai+1 ⊕ 02 · ai+2 ⊕ 02 · ai+5 ⊕ 02 · ai+7⊕ (4)

04 · ai+3 ⊕ 04 · ai+4 ⊕ 04 · ai+6 ⊕ 04 · ai+7

In this case, the previous optimization cannot be applied. However, it is still possible to minimize the number
of XOR operations in this case as well. Since many terms (ai, 02 · ai, 04 · ai) in the computation are added
to more than one result, we can save XORs by computing temporary results again. For example, the term

t = 02 · a0 ⊕ 02 · a2 ⊕ a5 ⊕ 04 · a7 ⊕ a7 (5)

is added to b0, b1 and b3. We can save many XOR operations by computing such temporary results first.
In [1] the reuse of such temporary results has been optimized (see Table 3). These equations result in 16
multiplications by 02 and 58 XOR operations.
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Table 3: MixBytes computation with 58 XORs. A “•” denotes those inputs (ai, 02 · ai, 04 · ai) which are
added to get the results bi. Superscripts denote the order in which the temporary results are computed (1
corresponds to the temporary results of Equation 5).

a0 a1 a2 a3 a4 a5 a6 a7

04 02 01 04 02 01 04 02 01 04 02 01 04 02 01 04 02 01 04 02 01 04 02 01

b0 − •1 − − •2 − − •1 •9 •d − − •d − •2 − •9 •1 •2 − •2 •1 •2 •1

b1 •5 •1 •5 − •a − − •1 − − •5 •b •d − − •5 − •1 − •b •a •1 − •1

b2 •5 − •5 •7 •2 •7 − •c − − •5 − − •7 •2 •5 − − •2 − •2 − •2 •c

b3 − •1 •3 •7 − •7 •3 •1 •3 − •3 − − •7 − − •3 •1 •d − − •1 − •1

b4 •d − •3 − •a •4 •3 − •3 •4 •3 •4 − •4 − − •3 − − •4 •a •d − −
b5 •d − − •6 − •4 •d •c •9 •4 − •4 •6 •4 •6 − •9 − − •4 − − •6 •c

b6 − •8 •3 •6 − − •3 − •3 − •3 •b •6 − •6 •8 •3 •8 − •b − − •6 −
b7 − •8 − − •2 •4 − − − •4 − •4 − •4 •2 •8 − •8 •2 •4 •2 − •2 −

4.4.6 Other Possible Optimisations

Another possibility to reduce the computation costs of MixBytes is to use a different basis of multipliers.
Instead of (01, 02, 04), Çalik used in his implementation the basis (03, 05, 07) [4]. In this case, the Hamming
weight of the multiplication constants reduces significantly. Unfortunately, this basis does not result in less
than 58 XORs and needs 16 multiplications by 02 as well.

In platforms where many registers are available and multiplications by 02 are cheap, it can be of an
advantage to compute the results of each multiplier separately [1]. In this case, the results bi,1 of multiplier
01 can be reused to compute those for multiplier 02 since bi,2 = 02 · bi+3 mod 8,1 (see Table 5). For multipliers
01 and 04 (bi,4) temporary results are used to further minimize the number of XORs. This approach results
in 24 multiplications by 2 and 48 XORs.

5 T-Table Implementations

In this section we present some example implementations which use the T-table approach for Grøstl. This
implementation technique is most efficient on 64-bit platforms. On 32-bit platforms, the number of necessary
instructions double. In the following listing, we provide an unoptimized C code segment for the computation
of one round of permutation P of Grøstl-256:

// AC

a0 = b0 ^ c0;

a1 = b1 ^ c1;

a2 = b2 ^ c2;

a3 = b3 ^ c3;

a4 = b4 ^ c4;

a5 = b5 ^ c5;

a6 = b6 ^ c6;

a7 = b7 ^ c7;

// SB+SH+MB (column 0 of P)

b0 = T0[(a0>>0 ) & 0xff];

b0 ^= T1[(a1>>8 ) & 0xff];

b0 ^= T2[(a2>>16) & 0xff];

b0 ^= T3[(a3>>24) & 0xff];

b0 ^= T4[(a4>>32) & 0xff];

b0 ^= T5[(a5>>40) & 0xff];

b0 ^= T6[(a6>>48) & 0xff];

b0 ^= T7[(a7>>56) & 0xff];

// SB+SH+MB (column 1 of P)

b1 = T0[(a0>>8 ) & 0xff];

b1 ^= T1[(a1>>16) & 0xff];

b1 ^= T2[(a2>>24) & 0xff];

b1 ^= T3[(a3>>32) & 0xff];

b1 ^= T4[(a4>>40) & 0xff];

b1 ^= T5[(a5>>48) & 0xff];

b1 ^= T6[(a6>>56) & 0xff];

b1 ^= T7[(a7>>0 ) & 0xff];

// SB+SH+MB (column 2 of P)

b2 = T0[(a0>>16) & 0xff];

b2 ^= T1[(a1>>24) & 0xff];

b2 ^= T2[(a2>>32) & 0xff];

b2 ^= T3[(a3>>40) & 0xff];

b2 ^= T4[(a4>>48) & 0xff];

b2 ^= T5[(a5>>56) & 0xff];

b2 ^= T6[(a6>>0 ) & 0xff];

b2 ^= T7[(a7>>8 ) & 0xff];

// SB+SH+MB (column 3 of P)

b3 = T0[(a0>>24) & 0xff];

b3 ^= T1[(a1>>32) & 0xff];

b3 ^= T2[(a2>>40) & 0xff];

b3 ^= T3[(a3>>48) & 0xff];

b3 ^= T4[(a4>>56) & 0xff];

b3 ^= T5[(a5>>0 ) & 0xff];

b3 ^= T6[(a6>>8 ) & 0xff];

b3 ^= T7[(a7>>16) & 0xff];

// SB+SH+MB (column 4 of P)

b4 = T0[(a0>>32) & 0xff];

b4 ^= T1[(a1>>40) & 0xff];

b4 ^= T2[(a2>>48) & 0xff];

b4 ^= T3[(a3>>56) & 0xff];

b4 ^= T4[(a4>>0 ) & 0xff];

b4 ^= T5[(a5>>8 ) & 0xff];

b4 ^= T6[(a6>>16) & 0xff];

b4 ^= T7[(a7>>24) & 0xff];

// SB+SH+MB (column 5 of P)

b5 = T0[(a0>>40) & 0xff];

b5 ^= T1[(a1>>48) & 0xff];

b5 ^= T2[(a2>>56) & 0xff];

b5 ^= T3[(a3>>0 ) & 0xff];

b5 ^= T4[(a4>>8 ) & 0xff];
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b5 ^= T5[(a5>>16) & 0xff];

b5 ^= T6[(a6>>24) & 0xff];

b5 ^= T7[(a7>>32) & 0xff];

// SB+SH+MB (column 6 of P)

b6 = T0[(a0>>48) & 0xff];

b6 ^= T1[(a1>>56) & 0xff];

b6 ^= T2[(a2>>0 ) & 0xff];

b6 ^= T3[(a3>>8 ) & 0xff];

b6 ^= T4[(a4>>16) & 0xff];

b6 ^= T5[(a5>>24) & 0xff];

b6 ^= T6[(a6>>32) & 0xff];

b6 ^= T7[(a7>>40) & 0xff];

// SB+SH+MB (column 7 of P)

b7 = T0[(a0>>56) & 0xff];

b7 ^= T1[(a1>>0 ) & 0xff];

b7 ^= T2[(a2>>8 ) & 0xff];

b7 ^= T3[(a3>>16) & 0xff];

b7 ^= T4[(a4>>24) & 0xff];

b7 ^= T5[(a5>>32) & 0xff];

b7 ^= T6[(a6>>40) & 0xff];

b7 ^= T7[(a7>>48) & 0xff];

A number of optimized C implementations have been published for Grøstl. The most important ones are
the implementations submitted to NIST by the designers [8] and the crypto library sphlib3.0 [19]. Although
sphlib is not fully optimized (e.g. the round constants are added byte-by-byte), it has a good performance
on many constrained (32-bit) devices. In the following, we present optimized assembly implementations on
a few example platforms which can serve as a reference for further T-table optimizations.

5.1 64-bit Processors

A T-table implementation of Grøstl on 64-bit processors needs 8 table lookups, 8 XOR, and at most 8 SHIFT

and 8 AND instructions per column computation (see Section 5). However, on x86 CPUs, we can reduce the
ALU instructions to 8 XOR, 8 MOV and 3 SHIFT instructions per column as follows.

Let rax contain column 0, where the least significant 8 bits correspond to the top byte. Now, the following
two instructions each extract one byte out of rax:

movzbl edi, al ; put least sig. byte (row 0) in edi

movzbl esi, ah ; put second-least sig. byte (row 1) in esi

After this, edi is used as index to lookup table T0, esi is used as index to lookup table T7 (since ShiftBytes
will move it to column 7). The results are stored in (or XORed to, for subsequent bytes) the new columns
0 and 7. Then, the register rax is shifted 16 bits to the right. Hence, next time we carry out the above two
instructions again, edi will contain the byte in row 2, and esi will contain the byte in row 3. Note that we
work on two columns at the same time in order to maximize instruction level parallelism.

Intel desktop processors prior to the Sandy Bridge architecture have one memory load and one store
units and up to three arithmetic logic units (ALUs). This implies that the load instructions are dominant,
and the maximal throughput is 1 cycle/byte for each round of Grøstl. This results in 20 cycles/byte for
Grøstl-256 and 28 cycles/byte for Grøstl-512. The results given in Table 1 show that the speed of Grøstl
is very close to this bound on the Intel Core2 Duo processor.

Since AMD Opteron and Intel Sandy Bridge processors have two memory load units, up to two parallel
table lookups are possible within each CPU cycle. Assuming that single bytes can be extracted efficiently
using one instruction, we get 0.5 cycles/byte for the loads and (8 + 8 + 3)/8/3 = 0.79 cycles/byte for the
ALU instructions. Hence, the ALU instructions are dominant and we get a lower bound of 15.8 cycles/byte
for Grøstl-256 and 22.1 cycles/byte for Grøstl-512. However, these ideal results are difficult to achieve in
practice and our implementations are not approaching the theoretical lower bounds yet (see Table 1).

5.2 32-bit Processors

Since the number of table lookups and XORs double for the 32-bit T-table implementation, we get a lower
bound of 40 cycles/byte for Grøstl-256 and 56 cycles/byte for Grøstl-512 if no parallel table lookups are
possible. However, many current and future 32-bit processors have 64-bit instruction set extensions such as
MMX for Intel/AMD processors [13] and NEON for ARM processors [2]. Using these extended instructions,
we can get a speed close to 20 cycles/byte also on 32-bit x86 CPUs. A similar improvement can be expected
from new NEON implementations.

6 SIMD-based Byte Slicing Implementations

In this section we describe a few concrete examples of the byte slicing implementation of Grøstl. We chose
to present an implementation on an Intel-64 platform with SSSE3 instruction set as an example of popular,
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modern desktop-class CPU. We show an implementation taking advantage of the AES-NI instruction set
present in Intel Core iX and Sandy Bridge processors. Byte sliced implementation with AES-NI instructions
is currently the fastest Grøstl implementation [3] on Intel platforms.

We also discuss the vperm implementation, an alternative for processors not equipped with AES-NI
instructions. In this case, the SubBytes transformation can still be implemented efficiently using only generic
SSSE3 instructions.

6.1 Transposing the Input Message

Transforming the input message from column-ordering into row-ordering corresponds to transposing the
input message block. Many algorithms for transposing a matrix are known and a square matrix can be
transposed using only a few PUNPCK instructions [11]. If we store the whole Grøstl-256 state (P and Q) in
128-bit registers, we get an 8x16 rectangular matrix. Hence, additional byte shuffling (PSHUFB) and move
(MOV) instructions are needed to transpose the input message [1].

6.2 Using AES-NI

In this section we describe the details of the fastest known Grøstl implementation using the Intel AES-NI
extension. Together with Intel AVX instructions a speed of less than 10 cycles/byte can be reached.

// AC

pxor xmm0, [CONST0]

pxor xmm1, [CONST1]

pxor xmm2, [CONST2]

pxor xmm3, [CONST3]

pxor xmm4, [CONST4]

pxor xmm5, [CONST5]

pxor xmm6, [CONST6]

pxor xmm7, [CONST7]

// SH (with AES ShiftRowsInv)

pshufb xmm0, [SIGMA0]

pshufb xmm1, [SIGMA1]

pshufb xmm2, [SIGMA2]

pshufb xmm3, [SIGMA3]

pshufb xmm4, [SIGMA4]

pshufb xmm5, [SIGMA5]

pshufb xmm6, [SIGMA6]

pshufb xmm7, [SIGMA7]

// SB (with AES ShiftRows)

pxor xmm8, xmm8

aesenclast xmm0, xmm8

aesenclast xmm1, xmm8

aesenclast xmm2, xmm8

aesenclast xmm3, xmm8

aesenclast xmm4, xmm8

aesenclast xmm5, xmm8

aesenclast xmm6, xmm8

aesenclast xmm7, xmm8

// MB (y_i = a_{i+6})

movdqa xmm14, xmm0");

movdqa xmm15, xmm1");

movdqa xmm8, xmm2");

movdqa xmm9, xmm3");

movdqa xmm10, xmm4");

movdqa xmm11, xmm5");

movdqa xmm12, xmm6");

movdqa xmm13, xmm7");

// MB (t_i = a_i + a_{i+1})

pxor xmm0, xmm1");

pxor xmm1, xmm2");

pxor xmm2, xmm3");

pxor xmm3, xmm4");

pxor xmm4, xmm5");

pxor xmm5, xmm6");

pxor xmm6, xmm7");

pxor xmm7, xmm14");

// MB (y_i = a_{i+6} + t_i)

pxor xmm8, xmm4");

pxor xmm9, xmm5");

pxor xmm10, xmm6");

pxor xmm11, xmm7");

pxor xmm12, xmm0");

pxor xmm13, xmm1");

pxor xmm14, xmm2");

pxor xmm15, xmm3");

// MB (y_i = y_i + t_{i+2})

pxor xmm14, xmm4");

pxor xmm15, xmm5");

pxor xmm8, xmm6");

pxor xmm9, xmm7");

pxor xmm10, xmm0");

pxor xmm11, xmm1");

pxor xmm12, xmm2");

pxor xmm13, xmm3");

movaps [TMP_Y4], xmm8");

movaps [TMP_Y5], xmm9");

// MB (x_i = t_i + t_{i+3})

movdqa xmm8, xmm0");

movdqa xmm9, xmm1");

movaps [TMP_T2], xmm2");

pxor xmm0, xmm3");

pxor xmm1, xmm4");

pxor xmm2, xmm5");

pxor xmm3, xmm6");

pxor xmm4, xmm7");

pxor xmm5, xmm8");

pxor xmm6, xmm9");

pxor xmm7, [TMP_T2]");

// MB (z_i = 02 * x_i)

movaps xmm9, [ALL_1B]");

MUL2(a0, b0, b1);

MUL2(a1, b0, b1);

MUL2(a2, b0, b1);

MUL2(a3, b0, b1);

MUL2(a4, b0, b1);

MUL2(a5, b0, b1);

MUL2(a6, b0, b1);

MUL2(a7, b0, b1);

// MB (w_i = z_i + y_{i+4})

pxor xmm0, [TMP_Y4]");

pxor xmm1, [TMP_Y5]");

pxor xmm2, xmm10");

pxor xmm3, xmm11");

pxor xmm4, xmm12");

pxor xmm5, xmm13");

pxor xmm6, xmm14");

pxor xmm7, xmm15");

// MB (v_i = 02 * w_i)

MUL2(a0, b0, b1);

MUL2(a1, b0, b1);

MUL2(a2, b0, b1);

MUL2(a5, b0, b1);

MUL2(a6, b0, b1);

MUL2(a7, b0, b1);

MUL2(a3, b0, b1);

MUL2(a4, b0, b1);

// MB (b_i = v_{i+3} + y_{i+4})

pxor xmm13, xmm0");

pxor xmm14, xmm1");

pxor xmm15, xmm2");

pxor xmm10, xmm5");
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pxor xmm11, xmm6");

pxor xmm12, xmm7");

movaps xmm8, [TMP_Y4]");

movaps xmm9, [TMP_Y5]");

pxor xmm8, xmm3");

pxor xmm9, xmm4");

6.2.1 AddRoundConstant

The AddRoundConstant transformation XORs a round-dependent row-wise constant to the first row in P and
the last row in Q, and a round-independent constant to each row of Q. Since the Grøstl state is stored in
row-ordering, these constants can be added efficiently in parallel to each column of the state. For example,
the constants of Grøstl-256 are added as follows:

movaps xmm8, [0xffffffffffffffff0000000000000000]

pxor xmm0, [ROUND_CONST_P0]

pxor xmm1, xmm8

pxor xmm2, xmm8

pxor xmm3, xmm8

pxor xmm4, xmm8

pxor xmm5, xmm8

pxor xmm6, xmm8

pxor xmm7, [ROUND_CONST_Q7]

6.2.2 SubBytes

SubBytes is usually the most difficult transformation to implement efficiently in a byte slice implementation.
As already mentioned, for w-bit registers we need an efficient method to compute w/8 parallel AES S-box
lookups. This results in only one (parallel) table lookup in the case of 8-bit implementations (w = 8).
Unfortunately, for larger register sizes, parallel table lookups are usually non-trivial.

Although Grøstl does not use the same MDS matrix as the AES, Grøstl can still take advantage of
the Intel AES New Instructions extension (AES-NI). Since no MixColumns transformation is applied in the
last round of the AES, Intel also provides an AESENCLAST instruction. This instruction is able to compute
16 AES S-boxes in parallel with a throughput of one cycle and a latency of 4 cycles. The byte shuffling
of the AESENCLAST instruction can be combined with an extra byte shuffling to perform the ShiftBytes
transformation of Grøstl (see Section 6.2.3).

6.2.3 ShiftBytes

Since ShiftBytes just moves bytes within one row of Grøstl, this transformation can be implemented using
only byte shuffling instructions. If AESENCLAST is used to compute the S-box lookups, we need to take the
ShiftRows transformation of the last round in AES into account. Note that any ShiftBytes rotation constants
can be used for P and Q at no additional cost. The resulting instructions for the combined SubBytes and
ShiftBytes transformation of Grøstl-256 is given below:

pxor xmm8, xmm8

pshufb xmm0, [03060a0d080205090c0f0104070b0e00]

aesenclast xmm0, xmm8

pshufb xmm1, [04070c0f0a03060b0e090205000d0801]

aesenclast xmm1, xmm8

pshufb xmm2, [05000e090c04070d080b0306010f0a02]

aesenclast xmm2, xmm8

pshufb xmm3, [0601080b0e05000f0a0d040702090c03]

aesenclast xmm3, xmm8

pshufb xmm4, [0702090c0f0601080b0e0500030a0d04]

aesenclast xmm4, xmm8

pshufb xmm5, [00030b0e0907020a0d080601040c0f05]

aesenclast xmm5, xmm8

pshufb xmm6, [01040d080b00030c0f0a0702050e0906]

aesenclast xmm6, xmm8

pshufb xmm7, [02050f0a0d01040e090c000306080b07]

aesenclast xmm7, xmm8
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6.2.4 MixBytes

The MixBytes transformation is the most costly transformation in a byte sliced implementation of Grøstl.
We need to combine the 8 rows of the Grøstl state according to the MixBytes matrix multiplication. For
processors that can execute more than one SIMD instruction in parallel, a MixBytes computation with the
minimum number of instructions does not necessarily result in the fastest implementation. For example,
modern desktop CPUs can compute three independent SIMD XORs in parallel. However, when the MixBytes
computation contains many long chains of dependencies, the ALU parallelism cannot be fully utilised.

To compute MixBytes using SIMD instructions, we use the formulas of Section 4.4.4. This variant
contains the minimal possible number of 16 multiplications and 48 XORs, and the computations are also
mostly independent. To illustrate this approach in details, we consider the implementation of MixBytes using
equations (6) on Intel-64 architecture with SSE2 instructions. In order to closer reflect the constraints of the
assembler code, we rewrite the last equation to contain only one type of operation in each pass. This yields
the following sequential formulas:

ti = ai ⊕ ai+1,

yi = ai+6 ⊕ ti,
yi = yi ⊕ ti+2,

xi = ti ⊕ ti+3,

zi = 02 · xi,
wi = zi ⊕ yi+4,

vi = 02 · wi,

bi = vi+3 ⊕ yi+4.

(6)

The main challenge is to minimise the number of register spills when performing the computation in 16
xmm registers and reorder instructions in a way ensuring maximal instruction throughput. The algorithm
shown in Table 4 achieves this with only four spills that are not on a critical path and therefore can be
masked by other operations. We start with a0, . . . , a7 in registers xmm0,. . . , xmm7 and keep building b0, . . . , b7
in xmm8,. . . ,xmm15. The byte-wise multiplication by 02 of the content of xmm{i} is done by the sequence of
five instructions

pxor xmm{j}, xmm{j} ; clear register

pcmpgtb xmm{j}, xmm{i} ; comparing with 0 sets 0xff in bytes that correspond to MSB bits set

paddb xmm{i}, xmm{i} ; byte-wise shift left by one position

pand xmm{j}, xmm{k} ; pick only those 0x1b that correspond to MSB bit set in xmm{i}

pxor xmm{i}, xmm{j} ; and XOR reduction polynomial to the result where necessary

that requires an extra register xmm{j} as a scratch space and xmm{k} containing the constant reduction value
of 1b1b...1b. To get those extra registers, we can temporarily spill xmm8, xmm9 since they hold the values y4,
y5 which will not be used in a critical path of the computation.

When AVX instructions are available (starting from Intel Sandy Bridge) we can use three-operand in-
structions to reduce the number of instructions required by the multiplication to four, but the advantage is
smaller than one instruction since Sandy Bridge cores recognize XORing to clear register and do not issue
µops in that case anyway.

6.3 Using Vperm

Even if no AES-NI are available, we can still implement Grøstl efficiently using SIMD instructions. We
just need a different method to parallelize the S-box lookups in SubBytes. One such method has been
proposed by Hamburg [10] and uses vector permute (vperm) instructions to compute the inversion and affine
transformation of the AES S-box.

In the following, we describe a Grøstl implementation using the vperm idea. The resulting implemen-
tation needs at least SSSE3 instructions and thus, also runs on the NIST reference platform. The resulting
speed is comparable with the T-table implementation.
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Table 4: Optimised computation of MixBytes on a Intel-64 machine with SSE2 instructions. Each row de-
scribes eight operations for i = 0, . . . , 7. Left columns show the content of two banks of registers with updated
values shown in bold and the rightmost column describes the performed operation. MUL2(xmma,xmmb,xmmc)
doubles the content of xmma using xmmb as scratch and assuming xmmc contains 1b..1b.

xmm0 . . . xmm7 xmm8 . . . xmm15 operation equation

a0a1 . . . a7 —
a0a1 . . . a7 a2 a3 . . .a1 movdqa xmm{i+ 8}, xmm{(i+ 2) mod 8}
t0t1 . . . t7 a2 a3 . . . a1 pxor xmm{i}, xmm{(i+ 1) mod 8} ti = ai ⊕ ai+1

pxor xmm{i+ 8}, xmm{(i+ 4) mod 8} yi = ai+6 ⊕ ti
t0t1 . . . t7 y4 y5 . . .y3 pxor xmm{i+ 8}, xmm{(i+ 6) mod 8} yi = yi ⊕ ti+2

spill t0, t1, t2 to memory in this computation:
x0x1 . . .x7 y4 y5 . . . y3 pxor xmm{i}, xmm{(i+ 3) mod 8} xi = ti ⊕ ti+3

y4 1b..1b y6 . . . y3 spill xmm8, xmm9 to memory, xmm9← 0x1b...1b
z0z1 . . . z7 — 1b..1b y6 . . . y3 MUL2(xmm{i}, xmm8, xmm9) zi = 02 · xi
w0w1 . . .w7 — 1b..1b y6 . . . y3 pxor xmm{i}, xmm{(i+ 8)}, y4, y5 from memory wi = zi ⊕ yi+4

v0v1 . . .v7 — 1b..1b y6 . . . y3 MUL2(xmm{i}, xmm8, xmm9) vi = 02 · wi

v0v1 . . . v7 y4 y5 y6 . . . y3 reload y4, y5 back to xmm8, xmm9
v0v1 . . . v7 b0 b1 . . .b7 pxor xmm{i+ 8}, xmm{(i+ 3) mod 8} bi = vi+3 ⊕ yi+4

The state is stored in row-ordering and hence, the input transformation of the message block can be per-
formed as described in Section 6.1. In the following, the computation of SubBytes and MixBytes are somewhat
merged. Therefore, we swap the order of AddRoundConstant and ShiftBytes for an easier description.

6.3.1 AddRoundConstant

The AddRoundConstant implementation can be implemented exactly using the same instructions as in the
AES-NI implementation. However, since the vperm implementation uses a different basis, the constants need
to be transformed to this basis as well. The resulting constants can be precomputed and stored in memory
as well. For the specific constants, we refer to the actual vperm implementation of Grøstl.

6.3.2 ShiftBytes

ShiftBytes is computed using single byte shuffle instructions for each row of P and Q. For example, the used
rotation constants for the PSHUFB instruction of Grøstl-256 are given in the following assembly code listing:

pshufb xmm0, [0x080f0e0d0c0b0a090706050403020100]

pshufb xmm1, [0x0a09080f0e0d0c0b0007060504030201]

pshufb xmm2, [0x0c0b0a09080f0e0d0100070605040302]

pshufb xmm3, [0x0e0d0c0b0a09080f0201000706050403]

pshufb xmm4, [0x0f0e0d0c0b0a09080302010007060504]

pshufb xmm5, [0x09080f0e0d0c0b0a0403020100070605]

pshufb xmm6, [0x0b0a09080f0e0d0c0504030201000706]

pshufb xmm7, [0x0d0c0b0a09080f0e0605040302010007]

6.3.3 SubBytes

In the vperm implementation, the inverse in GF (28) of the AES S-box is computed using small log tables
of the finite field GF (24). To efficiently compute these log tables, the 128-bit PSHUFB instruction of SSSE3
is used as a 4-to-8 bit lookup table. For more details, we refer to the original paper [10]. The first vperm
implementation has been published by Çalik [4] which served as a reference for our optimized implementation.

Using the vperm implementation, 16 AES S-boxes can be computed in parallel within less than 10 cycles.
An additional advantage of this implementation is that we can multiply the resulting outputs by constants in
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GF (28) almost without no additional cost. Hence, the vperm implementation of SubBytes actually returns
the values S(xi), 02 · S(xi) and 04 · S(xi) for each of the 16 input bytes xi.

6.3.4 MixBytes

Since the multiplication by 02 and 04 of the input bytes to MixBytes are already computed in SubBytes, the
formulas resulting in only 48 XORs of Section 4.4.4 cannot be used. However, we can use the method of
Section 4.4.5 which minimizes the number of XORs once the multiplications have already been performed.
Note that this approach is still more efficient since the 16 multiplications by 02 are much more expensive if
computed using 5 instructions each (see Section 6.2.4) than the additional 18 XORs.

7 Conclusions

In this paper, we have shown the details of the currently best known Grøstl implementations. Using AES-
NI extensions and AVX instructions, we are able to implement Grøstl-256 with close to 10 cycles/byte.
Furthermore, the design of Grøstl also provides many possibilities for efficient implementation techniques.
We have presented the most important methods and hope that they will serve as an inspiration for further
optimizations. Especially the vperm implementation has some room for improvements, on x86 CPUs as well
as on new platforms. For example, NEON byte permute instructions can be used to speed-up Grøstl on
new ARM platforms.
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Table 5: The MixBytes computation separated for factors 01, 02 and 04. ai denote the input bytes and
bi = bi,1⊕bi,2⊕bi,4 are the output bytes. A “•” marks those inputs (ai, 02 ·ai, 04 ·ai) which are added to get
the intermediate results bi,j . Superscripts denote the order in which temporary values are computed. The
results for factor 02 are computed by multiplying the results of factor 01 by 02 where bi,2 = 02 · bi+3 mod 8,1.

01 · a0 01 · a1 01 · a2 01 · a3 01 · a4 01 · a5 01 · a6 01 · a7
b0,1 − − •0 − •2 •0 •2 •
b1,1 •1 − − •1 − • •a •
b2,1 •b •3 − − •2 − •2 •3

b3,1 •b •3 •0 − − •0 − •3

b4,1 •1 • • •1 − − •a −
b5,1 − •3 • • • − − •3

b6,1 •1 − •0 •1 • •0 − −
b7,1 − • − • •2 • •2 −

02 · a0 02 · a1 02 · a2 02 · a3 02 · a4 02 · a5 02 · a6 02 · a7 =

b0,2 • • • − − • − • 02 · b3,1
b1,2 • • • • − − • − 02 · b4,1
b2,2 − • • • • − − • 02 · b5,1
b3,2 • − • • • • − − 02 · b6,1
b4,2 − • − • • • • − 02 · b7,1
b5,2 − − • − • • • • 02 · b0,1
b6,2 • − − • − • • • 02 · b1,1
b7,2 • • − − • − • • 02 · b2,1

04 · a0 04 · a1 04 · a2 04 · a3 04 · a4 04 · a5 04 · a6 04 · a7
b0,4 − − − •0 •1 − •0 •1

b1,4 •2 − − − •1 •2 − •1

b2,4 •2 •3 − − − •2 •3 −
b3,4 − •3 •4 − − − •3 •4

b4,4 •5 − •4 •5 − − − •4

b5,4 •5 •6 − •5 •6 − − −
b6,4 − •6 •7 − •6 •7 − −
b7,4 − − •7 •0 − •7 •0 −
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