
ar
X

iv
:2

10
1.

02
15

9v
2

 [
cs

.D
C

]
 1

8
Ja

n
20

21

Highway: Efficient Consensus with Flexible Finality

Daniel Kane1, Andreas Fackler2, Adam Gągol3, and Damian Straszak4

1Computer Science and Engineering Department, UC San Diego
2CasperLabs AG

3,4Cardinal Cryptography

January 19, 2021

Abstract

There has been recently a lot of progress in designing efficient partially synchronous

BFT consensus protocols that are meant to serve as core consensus engines for Proof of Stake

blockchain systems. While the state-of-the-art solutions attain virtually optimal performance

under this theoretical model, there is still room for improvement, as several practical aspects

of such systems are not captured by this model. Most notably, during regular execution,

due to financial incentives in such systems, one expects an overwhelming fraction of nodes

to honestly follow the protocol rules and only few of them to be faulty, most likely due to

temporary network issues. Intuitively, the fact that almost all nodes behave honestly should

result in stronger confidence in blocks finalized in such periods, however it is not the case

under the classical model, where finality is binary.

We propose Highway, a new consensus protocol that is safe and live in the classical par-

tially synchronous BFT model, while at the same time offering practical improvements over

existing solutions. Specifically, block finality in Highway is not binary but is expressed by

fraction of nodes that would need to break the protocol rules in order for a block to be re-

verted. During periods of honest participation finality of blocks might reach well beyond 1∕3

(as what would be the maximum for classical protocols), up to even 1 (complete certainty).

Having finality defined this way, Highway offers flexibility with respect to the configuration

of security thresholds among nodes running the protocol, allowing nodes with lower thresh-

olds to reach finality faster than the ones requiring higher levels of confidence.

1 Introduction

Since the introduction of Bitcoin [Nak08] and the concept of a decentralized, tamperproof database

– a blockchain – a number of different paradigms have been developed to design such databases.

1

http://arxiv.org/abs/2101.02159v2

Recently, the idea of building such systems based on PoS (Proof of Stake) has gained significant

popularity. While in the original PoW (Proof of Work, as used in Bitcoin) mechanism that is

used for incentivizing participation and securing the system, the voting power of a participant is

proportional to the amount of computational power possessed, in PoS the voting power is pro-

portional to the amount of tokens (digital currency specific to this system). A popular choice in

such systems is then to periodically delegate a fixed size committee of participants which then

is responsible for running the consensus on which blocks to add to the blockchain. This way of

building a blockchain has two substantial advantages over vanilla PoW systems such as Bitcoin:

1) it allows to run one of the classical permissioned consensus protocols that have been developed

over the last 4 decades, 2) it allows to not only reward nodes for participation but also penalize

misbehavior, by slashing security deposits of the offending committee members.

There has been recently tremendous progress in the design of permissioned consensus protocols

that can be used as core engines in such PoS blockchains [AMN+19, BKM18, BG17, CS20,

GLSS19, GAG+19, YMR+19, ZRAP18]. A vast majority of them are designed in the partially

synchronous BFT model [DLS88] which asserts that communication between nodes becomes

eventually synchronous and that no more than a given fraction of nodes, say 1∕3 (which is optimal

in this model), are dishonest and may violate the protocol in an arbitrary way. State-of-the-art

protocols such as Hotstuff [YMR+19], Tendermint [BG17] and Streamlet [CS20] come close

to optimality with respect to bandwith, latency of finalization and, also importantly, simplicity.

However, there are several practical properties of such blockchain systems that are not captured

by this classical model, and consequently, significant room for improvement remains. One such

important aspect is that the partition of nodes into honest and Byzantine might not accurately

reflect their true attitude. In fact, according to the model, even “honest” nodes that have missed

several protocol messages because of a DDoS attack or even a temporary network failure, are

considered Byzantine. In a situation where more than 1∕3 of nodes suffered (even for a few

seconds) from such a network issue, protocols in the classical BFT model are not guaranteed to

function properly.

On the other hand, besides these occasional offline periods, it is fair to assume that in a real-world

system an overwhelming fraction, if not all, of the nodes honestly follow the protocol rules. This

is a consequence of the financial incentives for honest participation. Indeed, it is in the best

interest of committee members to make sure they actively participate in the consensus protocol,

as they are paid a salary for honest work and are penalized for being offline or not contributing

enough to the protocol progress. In fact, because of penalties for protocol offences, it is highly

unlikely that an adversary tries an attack which is not guaranteed to succeed, as otherwise it risks

significant losses. Therefore, with the only exception of large-scale, coordinated attacks that are

intended to bring down the whole system, one should always expect almost all nodes to behave

honestly.

Motivated by this realization there have been several works that design protocols which are safe in

the classical sense while at the same time trying to offer better guarantees in “typical” scenarios.

In this paper we propose a new protocol – Highway – that contributes to this line of work. The

security of Highway is still formalized on grounds of the partially synchronous BFT model, thus

2

in particular it achieves safety and liveness in the most demanding setting when 1∕3 of all nodes

are Byzantine. However, on top of that, Highway offers the following two features that make it

particularly attractive in real-world deployments. First of all, in periods of honest participation

of a large fraction of nodes, it allows to reach finality of blocks with “confidence” much higher

than the typical threshold of 1∕3. To give an example, if a block reaches finality confidence

of 0.8 (which is possible in Highway) then at least 80% of the nodes would need to violate the

protocol in order to revert the block from the chain. This stands in contrast with the classical

notion of finalization that is binary: either a block is finalized (this means finality confidence

of 1∕3) or it is not. The second practical improvement in Highway is that it achieves flexibility

akin to the notion defined in [MNR19]. The nodes participating in Highway might be configured

with different security trade-offs between the allowed number of Byzantine and crashing nodes

(nodes that might go offline but are otherwise honest) in the protocol. Flexibility then means that

despite these differences in configuration, all the nodes run a single version of the protocol and

perform the same actions, only the finality decisions they make depend on the chosen parameters.

A practical consequence is that nodes with lower security thresholds might reach finality much

faster than nodes with higher thresholds, but as long as both these nodes’ assumptions are satisfied

they finalize the same blocks and stay in agreement.

Technically, Highway can be categorized as a DAG-based protocol [Bai16, GLSS19, MMS99,

ZRAP18], in which nodes jointly maintain a common history of protocol messages, forming

a directed acyclic graph representing the causality order. In its design, Highway derives from

the CBC-Casper approach [ZRAP18] and significantly improves upon it by the use of a new

finality mechanism, message creation schedule and spam prevention mechanism. We believe that

the conceptual simplicity of DAG-based protocols along with the desirable practical features of

the Highway protocol make it a solid choice for a consensus engine in a Proof of Stake-based

blockchain.

2 Our Results

2.1 Model

We consider a system with a fixed set  of n validators, each of them equipped with a public key

that is known to other nodes. This model matches the scenario of “permissioned blockchain”,

but the protocol can be applied to semi-permissionless scenario as well by rotating the set of

validators. Our model makes the following assumptions:

• (Reliable point-to-point communication) We assume that channels do not drop messages

and all messages in the protocol are authenticated by digital signature of the sender.

• (Partially synchronous network) There exists a publicly known bound Δ and an unknown

Global Stabilization Time (GST) so that after GST, whenever a validator sends a message, it

reaches the recipient within time Δ. Additionally, we assume that validators have bounded

3

clock drift1. Such version of partial synchrony is known as a known Δ flavour, for the

discussion on the version without publicly known Δ, see Subsection 3.6.3.

• (Byzantine faults) We assume that f out of n validators are under total control of an ad-

versary, and hence can arbitrarily deviate from the protocol. We do not make a global as-

sumption on the relation between f and n, as safety and liveness require different bounds,

and the latter have an interaction with number of crashing nodes as well.

• (Crashing faults) We assume that c out of n nodes can become permanently unresponsive

at some point in the protocol execution.

2.2 Consensus in the Context of Blockchain

In a typical blockchain system, validators are tasked with performing an iterative consensus on

an ever-growing chain of transactions that they receive from the external environment. In the

process, they enclose transactions into blocks forming a blockchain, in which each block refers

to its predecessor by hash. The first one, the genesis block, is part of the protocol definition.

In Highway, as the set of validators is either constant or subject only to very controlled changes

(between different eras, see Subsection 4.2), specific validators are directly appointed to construct

a block in a given time slot. They do so by enclosing transactions from their local queue and hash

of the block that they believe should be the predecessor.

As it may happen that a validator does not refer to the last constructed block (either intentionally,

or due to a network failure), the set  of blocks is a tree, with a unique path leading from each

block to the root: the genesis block G. The main goal of the consensus protocol in such a scenario

is to choose a single branch from such a tree. For a block B, we refer to all the blocks that are on

the other branches as competing with B, as if any of them would be chosen, B could not.

2.3 Practical Challenges

Strong optimistic finality. While since the initial definition of the partially synchronous model

by Dwork, Lynch and Stockmeyer [DLS88] a vast body of research was created to optimize vari-

ous parameters of protocols in this setting, most of it was written under the semi-formal assump-

tion that the existence of more than n∕3 dishonest nodes predates the existence of any provable

guarantees for such protocols. Such an assumption stems from the fact that, as proven in the orig-

inal paper, it is not possible for a partially synchronous protocol to guarantee both liveness and

finality if n < 3f + 1.

In spite of this negative result, it is however possible to provide additional finality guarantees in

the scenario where for a prolonged period even dishonest nodes do not deviate from the protocol

1Note that bounded clock drift can be achieved in any partially synchronous network by means of Byzantine clock

synchronization such as [DLS88]

4

and actively work to finalize blocks. Although it may not seem like an important observation

from the perspective of classical security models, we stress that it carries significant practical

consequences – in most cases of blockchain deployments it may be assumed that most of the

time basically all the nodes will actively collaborate to achieve consensus2. It is hence possible

to provide much stronger finality guarantees for blocks created during such periods, so to revert

them much more than n∕3 validators would have to collude.

Flexibility. Once the classical n < 3f + 1 bound is left aside, a natural tradeoff between finality

and liveness occurs – the stronger finality guarantee we require, the more validators need to hon-

estly collaborate to finalize the block with such a guarantee. The tradeoff could be resolved by all

the validators agreeing on a common finality threshold that they intend to use, but such solution

would have significant limitations.

In Highway, however, there is no need to agree upon a common threshold, so every validator

is able to use a different one, or even several different thresholds. Besides eliminating the need

to make an additional consensus on this particular hyperparameter, one important implication

of such feature is that it allows validators to play slightly different roles in the ecosystem – for

example some validators may deal mainly with finalizing relatively small transactions, in which

case small latency is more important than very high security (and, as will become apparent after

the protocol is presented, reaching higher thresholds usually takes more time), while others can

prioritize safety over latency3 .

2.4 Our Contribution

We present Highway - a consensus protocol achieving strong optimistic finality that is flexible

by allowing validators to use different confidence thresholds to convince themselves that a given

block is “finalized” (both confidence threshold and finality will be properly defined in Subsection

3.3).

Unless some validators actively deviate from the protocol, the finality of a block can only increase

for a given validator, which intuitively corresponds to the ever-increasing number of confirma-

tions for a block in PoW scenario. However, unlike in PoW, in Highway the confidence levels for

a given block can be directly interpreted as the number of validators that would need to misbehave

in order to reverse such a block, what we formalize as the following theorem:

Theorem 1 (Finality). If an honest validator reaches finality with confidence threshold t ≥ f for

a given valid block B, then no honest validator will ever reach finality with confidence threshold

t for a block competing with B.

Note that while due to the aforementioned impossibility result [DLS88] it is not possible to prove

2As most systems reward and punish validators based on their behavior, offline nodes and small-scale attacks

(ones that do not succeed in reverting a finalized block) are strongly disincentivised and hence not common.
3In fact, in Highway the choice of specific threshold influences only local computations performed by a validator

on the output of its communication with other validators. Hence, if validators would hand such communication logs

to outside observers, observers could reinterpret the logs using different thresholds.

5

liveness for confidence threshold
n

3
and higher, in practice the vast majority of validators will not

deviate from the protocol most of the times. In such times, arbitrarily high confidence thresholds

can be reached, which makes block constructed during such periods virtually impossible to revert.

Next, we provide a bound on the number of honest validators needed to guarantee that the protocol

will continue finalizing blocks with given confidence threshold. We note that it is in line with

the classical n ≥ 3f + 1 bound with the added notion of “crashing faults”, denoted by c, which

disrupts the consensus process, but not as much as the Byzantine ones.

Theorem 2 (Liveness). For every confidence threshold 0 ≤ t <
n

3
, if f ≤ t and c <

n−3t

2
, then

the chain of blocks finalized with confidence t grows indefinitely for each honest validator.

2.5 Related Work

The line of work on partially synchronous protocols was initiated with the seminal work of Dwork,

Lynch and Stockmeyer [DLS88], and gained popularity with the introduction of PBFT[CL99]

protocol and its numerous versions [BKM18, KAD+09, MNR19]. Classically, protocols in this

model attain resilience against less than n∕3 malicious nodes, due to a known bound stating that

is it not possible to provide both safety and liveness with higher number of Byzantine faults

[DLS88]. Some of the works however explore the concept of “flexibility” understood usually as

providing the strongest n∕3 security in the general partially synchronous model, and additional

guarantees in case some additional conditions, such as network synchronicity or limited adver-

sarial behavior, are met.

Gasper[BHK+20], the newly proposed candidate for Ethereum 2.0 consensus mechanism, ana-

lyzed the case of additional guarantees in case the network satisfies synchronicity assumptions.

Later very similar considerations got a proper formal treatment with the introduction of the snap-

and-chat family of protocols[NTT20]. The snap-and-chat protocols define two “levels of finality”

(formalized in the paper as two ledgers, one being an extension of another). The first one, faster,

relies on the classical partially synchronous assumptions and is guaranteed to be live and safe

as long as less than n∕3 nodes are faulty. The second level provides a stronger n∕2 resilience

against adversarial nodes, but is live only as long as the network is synchronous. As in practical

deployment assuming network synchronicity requires rather pessimistic assumptions about net-

work latency, the second finality can be assumed to progress significantly slower. The provided

construction is very modular and allows to use a wide variety of protocols to provide for the first

and second finality levels, and the consistency between both levels is guaranteed.

Protocol that carries perhaps the most similarities with Highway when it comes to achieved se-

curity guarantees is Flexible BFT[MNR19]. It defines the new type of faulty node, the alive-but-

corrupt node, that fully cooperates with honest nodes unless it is able to perform a successful

attack on protocol safety. Intuitively, it models the practical situation in which nodes without an

explicit incentive do not cheat, as that would mean loosing rewards in the PoS system. Similarly

as in Highway, the protocol is able to tolerate much more adversarial nodes if they do not aim

to merely break the liveness, but are interested only in breaking safety - the bounds match the

6

bounds in our paper. Flexible BFT also introduces, as the name suggests, certain flexibility for

the nodes when it comes to choosing the parameters related to the finality - each of the nodes can

have independent assumptions about number of faulty nodes of each kind, and it is guaranteed

that two honest nodes with correct assumptions can’t finalize competing blocks, and if all nodes

have correct assumptions, the protocol will continue making progress. The biggest conceptual

difference is that in Flexible BFT, assumptions held by nodes explicitly influence their behavior

in the protocol, while in Highway the assumed confidence threshold influences only the local

computations performed on the DAG whose form is not influenced by specific choices of confi-

dence thresholds made by validators. There are two main consequences of this difference. First,

in Highway validators can update their confidence thresholds and they are able to recompute fi-

nality of all of the blocks without the need of communicating with other validators, while in case

of Flexible BFT that would require rerunning the whole protocol. Second, perhaps even more

importantly, Flexible BFT can stall for everyone in case some of the honest validators incorrectly

assume the number of faulty parties. In contrast, in Highway unit production never stalls, and the

consensus may stall from the perspective of a given validator only if that specific validator made

incorrect assumptions on the number of faulty parties.

To illustrate this difference, consider the scenario in which there is a big group of overly-conservative

honest nodes incorrectly assuming that 90% of the nodes are honest – in such scenario in Flexible

BFT even less conservative honest nodes will not be able to finalize blocks, while less conserva-

tive honest validators in Highway will not be influenced by such a choice of other validators, as it

does not influence the communication between them in any way – in fact, validators doesn’t even

have explicit means of checking confidence thresholds chosen by the others.

3 Protocol

We denote by G the “genesis block” of the blockchain, which is considered part of the protocol

definition. Except the genesis block, every other block B consists of a reference to its parent,

denoted prev(B), and the content of the block – typically a list of transactions. The parent refer-

ence in B is realized by including the hash of prev(B) in B and thus there cannot be any cycles

in the block graph. We also denote by next(B) the set of all blocks for which B is the parent.

We recursively define the height H of a block: the height H(G) of the genesis block is 0 and

H(B) = 1+H(prev(B)) for any other block B. We say that a block B1 is a descendant of B2 and

write B2 ≤ B1 in case when one can reach B1 from B2 by following parent links (in particular

H(B2) ≤ H(B1).

3.1 Building a DAG

In the Highway protocol, validators exchange messages in order to reach consensus on proposed

blocks and hence validate one of possibly many branches of the produced blockchain. As a way of

capturing and spreading the different validators’ knowledge about the already existing messages,

7

it adopts the DAG framework [Bai16, GLSS19, MMS99, ZRAP18], in which every message

broadcast by a validator refers a certain set of messages sent by validators before. We will refer to

such messages broadcast during normal protocol operation as units, and the included references

as citations. More formally, each unit consists of the following data

• Sender. The ID of the unit’s sender (creator).

• Citations. A list of hashes of other units that the creator wants to attest to.

• Block. In case a unit is produced by the validator appointed to produce a block at a given

time, it is included in the unit.

All units to be considered correct must also have a digital signature by its sender. We denote the

sender (creator) of a unit u by S(u). As a given unit can only refer to previously constructed units,

the citations contained in units can be seen as edges in a DAG (directed acyclic graph).

In the protocol it will be often important not only whether a given unit u cites directly some other

unit u′, but whether there is a provable casual dependence between them, i.e., whether it can be

proven that during the creation of u its creator was aware of u′. Such a notion is easily captured by

the existence of the chain of citations connecting u and u′. In the presence of such a chain, we say

that the unit u′ is a justification of unit u or, in other words, that u′ justifies u. As the justification

relation is transitive, we interpret it as a partial order on the set of units and denote the fact that

u′ justifies u by u′ ≤ u. We denote the set of all units strictly smaller than u in this order, i.e., its

downset, by D(u), and the set D(u) ∪ {u} as D̄(u). We also naturally extend the downset notation

to sets of units, i.e., for a set  of units we define

D()
def
=

⋃

u∈

D(u) and D̄()
def
=

⋃

u∈

D̄(u).

To formalize the notion of a protocol view in the DAG framework, we introduce the following

definition:

Definition 1. (Protocol State.) A finite set of units � is a protocol state if it is closed under D,

i.e., if D(u) ⊆ � for every u ∈ �.

When creating a new unit u, a validator V is expected to always cite the last unit it created before

u, and hence include all its previous units in D(u). As a consequence, the units created by honest

validators always form a chain. Note that malicious nodes can still deviate from this rule, and

hence the following definition.

Definition 2. (Equivocation.) A pair of units (u, u′) is an equivocation if S(u) = S(u′) and u and

u′ are incomparable by the relation ≤. In such a case, the sender S(u) is called an equivocator.

For a given set of units  we denote the set of proven equivocators below it as

E()
def
= {V ∈  ∣ There exists u, u′ ∈ D() created by V s.t. u ≰ u′and u′ ≰ u}

8

We also denote the set of latest messages under a unit u produced by honest (so far) validators as

L(u)
def
= {v ∈ D(u) ∣ (v) ∉ E({u}) and v′ > v⇒(v′) ≠ (v) for every v′ ∈ D(u)}.

3.2 Voting via the GHOST Rule

In this section we introduce the GHOST (Greedy Heaviest Observed Sub-Tree) rule for fork selec-

tion in blockchains and explain how one can concretely implement it using an idea called virtual

voting in the DAG.

The GHOST rule. An important task run by every blockchain client is that of fork selection.

Given a set of blocks  that do not necessarily form a single chain, but are typically a tree of

blocks, the goal is to pick a single “tip” (i.e., a leaf in this tree) to be considered as the head of

the blockchain. In systems based on Proof of Work, such as Bitcoin or Ethereum, the Longest

Chain Rule is most commonly employed for that purpose, i.e., the leaf block of maximum depth

is chosen as the head.

In our setting, we would like the fork selection rule to somehow express the common belief of

the committee of validators on which chain is the “main one”. This however is not possible in the

absence of additional information on what the validators “think”. Suppose therefore that besides

the tree of blocks  we are given opinions of validators, represented by a mapping

opinion ∶  → ,

meaning that from the perspective of validator V ∈  the block opinion(V) should be the head

of the blockchain. Having the block tree and opinions we are ready to define the GHOST rule.

GHOST rule for block tree  and opinion function

1. For each B ∈  compute total(B) to be the total number of validators V ∈  such that

opinion(V) ≥ B (i.e., such that opinion(V) is a descendant of B).

2. Set B to the genesis block. Repeat the following steps while B is not a leaf in :

(a) Choose B′ ∈ next(B) with largest total(B′) (break ties by hash of B′).

(b) Set B ∶= B′.

3. Output B.

For brevity we write GHOST(, opinion) to be the block resulting from applying the GHOST

rule to the tree of blocks  using the opinion ∶  → .

9

Virtual Voting using the DAG. The GHOST rule is quite natural, intuitive and – as we will

soon demonstrate – has a number of desirable properties. However, for a node to apply it, it

needs the tree of blocks and the “most recent” votes by each of the validators. The question

becomes: how should the nodes maintain their local views on the block tree and what should they

consider as the current opinions of other nodes? Note that even minor inconsistencies between

two nodes on what the current opinions are might cause the GHOST rule to output different heads

of the blockchain. What is even worse is that such inconsistencies might be generated purposely

by dishonest nodes, by sending different opinions to different validators, or sending opinions

selectively.

In Highway, the consistency between local views of nodes is achieved with the help of the DAG.

Roughly speaking: each unit u carries a virtual GHOST vote, depending only onD(u) and possibly

the block included in u (if there is one). This vote is determined automatically from the virtual

GHOST votes in the “latest messages” under u. For brevity, below we denote by LV (u) the unique

unit v ∈ L(u) created by V in case it exists, otherwise LV (u) = ⊥. To formally define what a unit

u considers as vote(u), first we define an opinion function opinionu ∶  → u that is “local to u”.

Here u consists of all blocks that appear in D̄(u), so it may happen that unit u votes for a block

that it carries.:

opinionu(V)
def
=

{
vote

(
LV (u)

)
if LV (u) ≠ ⊥

G otherwise.

Subsequently, we define vote(u) as

vote(u)
def
= GHOST(u, opinionu).

While it does not affect correctness of the protocol, it is best for efficiency if honest validators

always make sure that the block B proposed in their unit u satisfies vote(u) = B. This is achieved

by choosing the parent of B to be GHOST(u ⧵ {B}, opinionu) and can be also made a necessary

condition for correctness of u.

One can interpret vote(u) as the block which the creator of u considers as the head of the blockchain,

at the moment when u was created. This does not quite mean that the creator of u is certain that

vote(u) will be ever finalized. Instead, each validator maintains for every block a confidence pa-

rameter that indicates how likely it is that a given block will be “reverted”, i.e., will not end up

as part of the blockchain. As we explain in the next section, this confidence parameter is pro-

portional to how many validators would need to equivocate their units, in order to revert a given

block.

3.3 Finality Condition

Having defined the DAG and voting mechanism, we are ready to introduce the rules of finalizing

blocks in the Highway protocol. By taking advantage of the DAG framework, validators are able

10

to compute finality of each block performing only local operations, namely searching for specific

structures in their local copy of the DAG.

Definition 3. A (q, k)-summit for the block B, relative to protocol state � is a nested sequence of

sets of units (C0, C1, C2,… , Ck) such that C0 ⊇ C1 ⊇ … ⊇ Ck and:

• unanimity. vote(u) ≥ B for all u ∈ C0,

• honesty. E(�) ∩ S(C0) = ∅,

• convexity. u0, u2 ∈ Ci implies u1 ∈ Ci, for all u0 ≤ u1 ≤ u2 s.t. S(u1) = S(u2) = S(u3),

• density.
|||S

(
D̄(u) ∩ C ′

i
)
)||| ≥ q for all u ∈ Ci+1.

Where C ′
i
=
{
u ∈ Ci ∣ there exists u′ ∈ Ci+1 s.t. S(u) = S(u′)

}
.

Intuitively, summits represent uninterrupted streaks of units produced by a big subset of validators

(i.e., a quorum) that vote for the same blockB — a structure in DAG after which it is very unlikely

that the votes will change, hence summits will be used to finalize blocks. In particular, as we

will prove in the series of lemmas, checking the following condition will suffice to convince the

validator that the given block B will not be retracted, unless more than t validators equivocate:

FINAL(B, �, t)
def
=

{
1 if there exists (q, k)-summit for B in � s.t. (2q − n)(1 − 2−k) > t

0 otherwise.

Now, based on the above definition we will refer to validator V as having block B finalized for

confidence threshold t if t is an integer value s.t. FINAL(B, �, t) = 1, where � is V ’s protocol

state. Next we prove the key technical lemma, showing that after a summit of certain height and

quorum size occurs, new units will not vote against the vote of the summit.

Lemma 1. Let C = (C0,… , Ck) be a (q, k)-summit for block B, relative to protocol state D̄(C0),

� ⊇ D̄(C0) be any correct protocol state, and let u be a unit in � such that D(u) ∩ Ck ≠ ∅ and

vote(u) ≱ B. Then f ≥ (2q − n)(1 − 2−k).

Proof. Let us define

A(u) = E(u) ∪
(
S
(
{v ∈ L(u) ∣ vote(v) ≱ B}

)
∩ E

(
C0 ∪D(u)

))

We will prove a slightly stronger thesis, namely that if the conditions of the Lemma are met, then

|A(u)| ≥ (2q − n)(1 − 2−k).

We proceed with an induction on k. Note that the k = 0 case follows trivially, as (2q−n)(1−2−0) =

0, hence we assume that the statement holds for k − 1.

11

Let us assume that there is a unit u satisfying the assumptions of the Lemma, i.e., such that

D(u) ∩ Ck ≠ ∅ and vote(u) ≱ B. Let us take a minimal such u.

Let uk ∈ D(u)∩Ck and k−1 = S
(
{v ∈ C ′

k−1
∣ v < u}

)
. As u is above some unit in Ck, we clearly

have |k−1| ≥ q. If all of the validators from k−1 would keep voting for B or for blocks above

it, so would u, hence some of them must have equivocated or changed vote. Let us additionally

define 
eq

k−1
= k−1 ∩ E(u) and 

change

k−1
= k−1 ∩ S

(
{v ∈ L(u) ∣ vote(v) ≱ B}

)
. As u is above at

least q − | eq

k−1
| − | change

k−1
| votes for B and still votes against it, we have4:

q − | eq

k−1
| − | change

k−1
| ≤ n − |E(u)|

2
≤

n − | eq

k−1
|

2

2q − n ≤ | eq

k−1
| + 2| change

k−1
| (1)

If 
change

k−1
is empty, we have the thesis already, so let us assume that 

change

k−1
≠ ∅. Let then u′ be

a minimal unit such that u′ ≤ u, vote(u′) ≱ B and D(u′) ∩ Ck−1 ≠ ∅, which is bound to exist by

noneptiness of 
change

k−1
. From the inductive assumption we get

|A(u′)| ≥ (2q − n)(1 − 2−k+1) (2)

Next, connecting Inequalities 1 and 2, we get

|A(u′) ∪ 
eq

k−1
| + | change

k−1
| ≥

|A(u′)|
2

+
| eq

k−1
| + 2| change

k−1
|

2
≥

(2q − n)(1 − 2−k+1)

2
+

2q − n

2
= (2q − n)(1 − 2−k)

Note that each V ∈ 
change

k−1
had to produce a unit in Ck, but also a unit witnessing voting for a

block competing with B. If the latter unit would be above the unit in Ck, that would contradict

the minimality of u, hence V needs to belong to E
(
C0 ∪D(u))

)
and, in consequence, to A(u). As

we also have A(u′) ⊆ A(u) and 
eq

k−1
∩ 

change

k−1
= ∅, the remaining thing to show is that the sets

A(u′) and 
change

k−1
are disjoint.

4Note that the total number of votes counted by u is n − |E(u)|

12

Suppose that there existsV ∈ A(u′)∩
change

k−1
. As

change

k−1
∩E(u) = ∅, it has to beV ∈ E

(
C0∪D(u′)

)

and the last V ’s unit that is strictly below u′ must vote for some block B′ competing with B. Let

v be this unit voting for B′ and v′ ∈ C ′
k−1

- witness of V being in k−1. As V is not seen as an

equivocator by u′, we have v′ ≤ v, hence we have vote(v) ≱ B, D(v) ∩Ck−1 ≠ ∅ and v ≤ u while

v < u′, contradicting the minimality of u′.

Lemma 2 (Finality). Let V1 and V2 be honest validators with their respective protocol states

�1, �2, and letB1, B2 be two competing blocks. Then, if FINAL(B1, �1, t1) = 1 andFINAL(B2, �2, t2) =

1, it has to be f > min(t1, t2).

Proof. Let � = �1∪�2∪{umax}, where umax is an additional unit created by one of the honest nodes

which has full �1 ∪ �2 as its downset. Note that � is an artificial state that might not necessarily

come up in a real execution of the protocol, however it is still a correct state, thus Lemma 1 applies

to it. By definition of FINAL, we get that there is a (q1, k1)-summit for B1 relative to �1 and a

(q2, k2)-summit for B2 relative to �2. By definition we have:

(2q1 − n)(1 − 2−k1) > t1 (3)

(2q2 − n)(1 − 2−k2) > t2 (4)

Note that even though � might not be reachable in protocol execution, Lemma 1 holds for any

correct state, as is �. Additionally, by the definition of the summit, any summit (C0,… , Ck)

respective to some protocol state �′ is also a summit respective to protocol state D̄(C0). As

umax is above both of the summits, from Lemma 1 we get that if vote(umax) ≱ B1 then f ≥

(2q1 − n)(1 − 2−k1) > t1, and if vote(umax) ≱ B2 then f ≥ (2q2 − n)(1 − 2−k2) > t2. As B1 and B2

are competing, vote(umax) can’t be above both of them, hence we get f > min(t1, t2).

Finally, we prove Theorem 1 as a simple corollary:

Proof. Assume for contradiction that two validators have reached finality for competing blocks

B and B′ with confidence threshold t ≥ f . But then, by Lemma 2, we have that f > min(t, t) = t,

what finishes the proof.

3.4 Computability of the Finality Condition

In this section we show that for a given state � and a quorum parameter q a straightforward

greedy algorithm can be used to find the highest possible (q, ⋅)-summit relative �. We start with

the pseudocode of this algorithm.

13

Algorithm SUMMIT(�, B, q)

1. LetS0 ⊆  be the set of all validators who have not equivocated in � and whose latest messages

vote for B.

2. Let C0 be the set of units created by S0, built as follows: for each validator V ∈ S0

(a) let u be the latest unit created by V in �

(b) while u votes for B:

• add u to C0

• replace u by the direct parent of u created by V in u’s downset

3. For l = 1, 2, 3,… repeat:

(a) Set Sl ∶= Sl−1

(b) Repeat:

i. Set W ∶= Sl

ii. Let CW ∶= {u ∈ Cl−1 ∶ S(u) ∈ W }.

iii. For each V ∈ W :

• If there is no u ∈ Cl−1 by V with |D(u) ∩ CW | ≥ q, remove V from Sl.

iv. If W = Sl, break the loop.

(c) If Sl = ∅ return {C0, C1,… , Cl−1}.

(d) Let C ′
l−1

∶= {u ∈ Cl−1 ∶ S(u) ∈ Sl}.

(e) Let Cl ∶= {u ∈ Cl−1 ∶ |D(u) ∩ C ′
l−1

| ≥ q, S(u) ∈ Sl}

The following lemma shows that the SUMMIT algorithm always outputs valid (q, ⋅)-summits and

moreover that the returned summits are maximal.

Lemma 3 (Properties of SUMMIT). Let (C0, C1,… , Cr) be the output of SUMMIT(�, B, q) then

1. (Correctness.) If r ≥ 1 then (C0, C1,… , Cr) is a (q, r)-summit for block B relative to �.

2. (Maximality.) For every (q, k)-summit (D0, D1,… , Dk) for block B, relative to �, we have

r ≥ k and Di ⊆ Ci for each i = 0, 1,… , k.

Proof. Correctness. It is evident by steps 1. and 2. of the algorithm that C0 satisfies convexity

and that all the Ci’s, for i = 0, 2,… , r, as subsets of C0 satisfy honesty and unanimity. Density for

Ci for i > 0 is guaranteed in step 3.(e) of the algorithm, this way of constructing Ci also implies

convexity.

What remains to prove is that all Ci’s are non-empty. We proceed inductively: C0 is non-empty

because r ≥ 1. Suppose now that Ci−1 ≠ ∅ for 1 < i ≤ r, we show that Ci ≠ ∅. Note that

since r ≥ i means that Si ≠ ∅ in step 3.(c) of the algorithm. Moreover, the loop 3.(b) guarantees

14

that after reaching 3.(c), each validator V ∈ Sk has created at least one unit u that satisfies

|D(u) ∩ C ′
i−1

| ≥ q. It follows that Ci is non-empty.

Optimality. We proceed by induction and show that Di ⊆ Ci and S(Di) ⊆ S(Ci) for each

i = 0, 1,… , k. Because of the convexity requirement for summits and the steps 1. and 2. of the

algorithm, the base case i = 0 holds.

Suppose now that Di ⊆ Ci and S(Di) ⊆ S(Ci) holds for i = 0, 1, 2, l−1 for some l ≤ k. We show

that Dl ⊆ Cl and S(Dl) ⊆ S(Cl). To this end, we first show the following invariant: the set W

that appears in the loop 3.(b) of the algorithm during iteration l satisfies S(Dl) ⊆ W . In the first

iteration we have W = Sl−1, and the invariant holds, since S(Dl) ⊆ S(Dl−1) and by induction

S(Dl−1) ⊆ S(Cl−1) = Sl−1. Now, whenever a validator V ∈ W is removed from W in step iii. of

loop 3.(b), we have that no unit u by V in Dl−1 satisfies |D(u) ∩ Ck−1| ≥ q. Since S(Dl−1) ⊆ W ,

this means that also no V ’s unit satisfies |D(u) ∩D′
l−1

| ≥ q and in particular V ∉ S(Dl).

In other words, whenever we remove a validator V from the set W , this validator cannot belong

to S(Dl), thus still S(Dl) ⊆ W ⧵ {V }. Consequently, the invariant holds, which in turn implies

that S(Dl) ⊆ Sl = S(Cl). The inclusion Dl ⊆ Cl is a simple consequence of S(Dl) ⊆ S(Cl) and

the way Cl is constructed in step 3.(e) of the algorithm.

A straightforward consequence is that the finality criterion FINAL(B, �, t) is efficiently com-

putable as follows

Computing FINAL(�, B, t)

1. For q = ⌈ n+t

2
⌉, ⌈ n+t

2
⌉ + 1,… , n do:

(a) Let k be the height of the summit output by SUMMIT(�, B, q).

(b) If (2q − n)(1 − 2−k) > t then return 1.

2. return 0.

3.5 Guaranteeing Liveness

So far we have discussed structural properties of the DAG produced during protocol execution and

showed that certain combinatorial structures – summits – when found within the DAG can be used

to conclude finality of a block. What however is still missing is a proof that such combinatorial

structures will actually appear in the DAG and that the adversary cannot indefinitely prevent any

progress from happening. Towards such a proof we need to first define a strategy for how and

when validators should produce new units and when to include new blocks in them.

Unit Creation Schedule. Recall that we work in the partially synchronous model of communica-

tion in which a valueΔ > 0 is known such that after an unknown moment in time called GST, each

message from an honest validator takes less than Δ time to reach its recipient. We make the stan-

15

dard assumption that validators have perfectly synchronized clocks (as each bounded difference

in their local times can be instead treated as delay in message delivery).

We divide the protocol execution into rounds r = 0, 1, 2,… of length R ∶= 3Δ. Each validator

keeps track of rounds locally, based on its clock. We assume that there exists a leader schedule

LEADER ∶ ℕ →  which assigns to a round index r ∈ ℕ a round leader LEADER(r) ∈  .

Round leaders are responsible for creating new blocks, hence, as one can imagine, it is important

to make sure that honest leaders appear in this schedule as often as possible. In theory we only

need to assume that honest validators appear in this schedule infinitely many times. In practice

one can, for instance, use a round-robin schedule or a pseudorandomly generated schedule.

We are now ready to introduce the strategy of how an honest validator should behave when it

comes to creating new units

Unit Creation and Reception Strategy by V ∈  in round r ∈ ℕ

/* Time is measured from the start of round r. */

/* Whenever a new unit is created by V , it’s above all maximal units in the

local DAG, and it is added to the DAG right away. */

1. At time t = 0: if V = LEADER(r)

(a) move all units from the buffer to the local DAG.

(b) create and broadcast a new unit uL (referred to as the proposal unit). Include in u a new

block B, choosing its parent so that vote(uL) = B.

2. In the time slot (0, R∕3), if V ≠ LEADER(r): if a new unit uL created by LEADER(r) is

received, add it (along with its downset) to the local DAG right away. Immediately after adding

uL, create and broadcast a new unit (referred to as the confirmation unit by V in this round).

All the remaining units received in this slot are placed in the buffer.

3. At time R∕3 move units from the buffer to the local DAG.

4. In the time slot (R∕3, 2R∕3): whenever a new unit is received, add it to the local DAG right

away.

5. At time t = 2R∕3: create and broadcast a new unit (referred to as the witness unit by V in

this round).

6. In the time slot (2R∕3, R): all the units received in this slot are placed in the buffer.

Note that it might happen that a validator skips the creation of the confirmation unit (in case it

did not receive a unit from the leader before time R∕3). The witness unit, on the other hand, is

always created. Thus in every round, the round leader creates 2 units: the proposal unit, and the

witness unit, and a non-leader creates either 1 (the witness unit) or 2 units (the confirmation and

the witness unit).

16

Lemma 4. Let t ≥ f be an integer confidence parameter and assume that the number of crashing

nodes is c <
n−3t

2
. If an honest validator reaches a state � such that FINAL(�, B, t) for some

block B, then after some point in time, for every state �′ reached by any honest validator it holds

FINAL(�′, B, t).

Proof. Denote by H the set of all validators that are neither Byzantine nor crashing. As n and t

are integer by definition, we have c ≤
n−3t−1

2
and thus

|H| = n − f − c ≥ n − t −
(
n − 3t − 1

2

)
=

n + t + 1

2
. (5)

Note first that after GST each validator V ∈ H eventually reaches a state that fully contains �.

Let r0 be the first round when this happens, from Lemma 1 it follows that each unit u created by

any of these validators from this point on satisfies vote(u) ≥ B.

Let us denote by uV
r

the witness unit (i.e. the one created at time 2R∕3) created in round r by the

validator V ∈ H . For r ≥ r0 + 1 we have the following properties satisfied by any u ∈ � created

by V with u ≥ uV
r

1. u contains in its downset all units uW
r−1

for W ∈ H ,

2. vote(u) ≥ B.

The former property follows from the fact that r0 happened after GST and the latter is a conse-

quence of Lemma 1: indeed finality was reached because of the existence of a particular summit

– each unit u built beyond this summit must then vote for a block ≥ B, thus vote(u) ≥ B. It is

now easy to see that the family of units {uV
r
} can be used to build arbitrarily high summits. More

specifically, given a state � define the following sets:

Ci ∶=
{
u ∈ � ∶ S(u) ∈ H, u ≥ uS(u)

r0+i

}
for i ≥ 0,

thus the set Ci is the union of chains of units that begin with uV
r0+i

for each validator V ∈ H . We

claim that whenever

|S(Ck)| = |H|, (6)

then (C0, C1,… , Ck) is a (|H|, k)-summit relative to �. This follows straight from the two prop-

erties listed above. Moreover, since all the validators in H are honest, each validator in H will

eventually reach a state � for which (6) holds.

It remains to note that, since by (5), |H| ≥ n+t+1

2
, for k > log(t + 1) we have

(2|H| − n)(1 − 2−k) ≥ (t + 1)(1 − 2−k) > t.

Consequently, FINAL(B, �′, t) holds for each honest validator’s state �′ after log(n) rounds.

17

Proof of Theorem 2:

Proof. Note that by Lemma 4 whenever even a single validator finalizes a block then all the

others, eventually, will follow in finalizing exactly the same block. Suppose thus, for the sake of

contradiction that there exists a run of the protocol such that for some height ℎ ≥ 0, some block

Bℎ is finalized, but no block is ever finalized (by any honest validator) at height ℎ + 1.

Denote by H the set of all validators that are neither Byzantine nor crashing. As in the proof of

Lemma 4 we have that |H| ≥ n+t+1

2
. Let r0 be a round index such that:

1. round r0 − 1 happened after GST,

2. each validator V ∈ H has already finalized Bℎ before the beginning of round r0 − 1, and

consequently voted for a block above Bℎ in all its units in the previous round,

3. The leader VL ∶= LEADER(r0) is a member of H .

The existence of such a round r0 follows from Lemma 1 (each unit that is built upon the summit

finalizing Bℎ votes for a block ≥ Bℎ) and the fact that validators in H appear infinitely often in

the schedule. We show that the block B proposed by the leader VL in round r0 will get eventually

finalized (thus reaching contradiction with the fact that height ℎ + 1 is never reached).

Towards this end, let us denote by �0 the state of VL at the start of round r0, by u0 the proposal

unit created by VL at the start of round r0, and by B the block that VL proposes in u0. Since VL

chooses as B’s parent the GHOST choice, we have that vote(u) = B. Moreover, Bℎ ≤ B because

all latest units by validators in H (which were created in round (r0−1)) vote for blocks above Bℎ.

Consider now any validator V ∈ H and let uV be the first of the units created by V during round

r0 (i.e., proposal unit in case V is the leader of that round, otherwise the confirmation unit of V ,

created before time R∕3). We claim that

D(uV) = �0 ∪ D̄(u0).

This follows from the fact that GST has passed and from the unit creation and reception strategy.

Indeed: between time 2R∕3 in round r0 − 1 when the previous unit ūV by V was created, and the

moment < R∕3 in round r0 when V received u0 (R∕3 = Δ hence V is guaranteed to receive u0
before timeR∕3), V did not include in its DAG any other units than u0 and its downset. Moreover,

VL received ūV before creating u0 and hence ūV ∈ D(u0), and thus the claim follows.

From the claim, the GHOST rule, and the fact that |H| > n∕2, we have that vote(uV) = B.

Further, if u′
V

is the witness unit by V in this round (created at time 2R∕3) we also have vote(u′
V
) ≥

B, because5 uW ∈ L(u′
V
) for allW ∈ H (because GST already happened, we know that each such

uW is received by V before u′
V

is created). By the same reasoning, each witness unit u′′
V

created

by an honest validator in round (r0 + 1) (i.e., created at time 2R∕3) has all units {u′
W
}W ∈H in its

5The reason why we claim that vote(u′
V
) ≥ B and not the stronger version vote(u′

V
) = B is because a dishonest

validator could have proposed another block on top of B in the meantime.

18

downset and vote(u′′
V
) ≥ B. By repeating this argument (see an analogous argument in the proof

of Lemma 4) one concludes that for every k > 0, by the start of round r0+k each honest validator

reaches a state �′ which contains a (|H|, k)-summit relative to �′.

Furthermore, by a calculation as in Lemma 4, we have that for k > log(t + 1) such summits

already finalize block B. Consequently, FINAL(B, �′, t) holds for each honest validator’s state �′

after round r0+k. Since this gives us a finalized block of height ≥ ℎ+1, we reach a contradiction

with the assumption that no block of height ℎ + 1 is ever finalized.

3.6 Communication Complexity

The so far described protocol, in the absence of Byzantine nodes is rather efficient when it comes

to communication complexity. Indeed, each validator produces and broadcasts 2 units per round

on average, and downloads the ≈ 2n units created by other validators in the same round. The

situation becomes much more tricky if some validators are Byzantine and try to make the commu-

nication complexity large, to possibly exhaust resources of honest validators, and cause crashes.

One possibility for that would be to send a large number of invalid or malformed messages to hon-

est validators – while such attacks can be dangerous, they can be dealt with by simply discarding

all such incorrect messages that are being received. Another possibility is to send messages, i.e.,

units that are not produced according to the protocol rules, but still look correct and thus cannot

be discarded by honest nodes. As it turns out, the latter type of attack needs to be addressed al-

ready in the protocol, and not in the implementation, as otherwise the communication complexity

of the protocol would be essentially infinite. One can distinguish two basic spam patterns of this

type that the dishonest validators can try:

• Vertical Spam. A dishonest validator does not equivocate but produces new units at a fast

pace, violating the Unit Creation and Reception Strategy. This type of spam is easy to deal

with, as one can compute exactly how many units a validator should have produced by a

given moment in time. And if we are receiving more, then we can simply ignore them.

• Horizontal Spam. A dishonest validator or a group of dishonest validators produce a large

number of equivocations and send them in parallel to different honest validators to make

the DAG large. These would by definition be equivocations for which the attacker might be

punished (likely by slashing its stake), but they could potentially be disruptive nonetheless.

The latter type of attack is by far more dangerous and harder to deal with. In the most basic form

of this attack, a single malicious validator sends a very large number of equivocating votes to

the other validators. If the other validators would include all of these votes in their local DAGs,

this would soon exhaust all memory available on their machines. We note that this kind of direct

attack is fairly easy to avoid simply by having validators refuse to directly cite equivocating votes

in their downsets (we will discuss a slightly more sophisticated version of this idea shortly). This

ensures that when there is only one attacker, then each honest validator directly cites at most one

chain of messages by the attacker. This means that a single equivocating attacker can produce

19

Ω(n) copies of its units (one per honest validator). This is a reasonable bound, as such behavior

is severely punished, and thus is expected to happen rarely if at all.

This however is not the end of the story, as the above defense does not quite work if multiple

attackers act together. Suppose that A1, A2, B1, B2, C1, C2,… ∈  are the attacking validators

who work together in order to create the following collection of messages.

1. A1 creates units m1 and A2 creates a unit m2,

2. m1 directly cites units m11 and m12 by B1 and B2 respectively,

3. m2 directly cites equivocating units m21 and m22, again by B1 and B2,

4. unit mij is above mij1 and mij2 by C1 and C2.

Continuing this pattern, a conspiracy of 2k validators can create a pattern of 2k votes over the

course of k rounds so that no vote directly cites an equivocation. An honest validator trying to

validate the top units in this pattern will need to download exponentially many equivocating units

at the bottom. What is perhaps worse here is that although it will be easy for the honest validators

receiving these units to tell that something is going wrong (given the extraordinary number of

units and equivocations), it is non-trivial to determine exactly who is responsible and where to

start cutting off the bad units. For example, in the pattern described, A1 and A2 actually have not

equivocated and so cannot be distinguished from honest validators. This means that a validator

V receiving this pattern will be left with the choice of either ignoring these messages (which

means that if A1 and A2 were honest that these validators are being permanently cut off from each

other), or forwarding them (which can be a problem if a version of this with different equivocating

messages was sent to the other honest validators). The above attack, referred to as Fork Bomb has

been described in [GLSS19].

To deal with such an attack, we will need to be extra suspicious of units that cite other units that

equivocate with ones that we already know of. In particular, we will want to know that these votes

are not themselves equivocations. We resolve this by introducing a system of endorsements.

3.6.1 Spam Prevention Using Endorsements

We note that one equivocating validator A ∈  might send equivocating units to each of the other

n − 1 validators and if they do not coordinate about which units to include in their next downset,

then all these may end up part of the DAG, and thus each honest validator will be forced to include

Ω(n) chains of units from A in order to incorporate each others’ units. Thus, as long as we do

not want to coordinate between validators the inclusion of every single unit in the DAG, then we

must accept that Ω(n) chains per validator (in case it equivocates) is the best we can hope for.

We propose a strategy that requires no coordination in the optimistic case – when no equivocation

is present in the DAG, and only adds some overhead in the pessimistic case – when equivocations

are there. At the same time it achieves the best possible guarantee: no local DAG of an honest

20

validator ever contains more than Ω(n) chains of units per equivocator. To this end we introduce

a new type of messages in the protocol: Endorsements.

An endorsement ENDORSE(V , u) is a message by a validator V ∈  (digitally signed by V)

regarding a unit u. Intuitively the meaning of this message is:

ENDORSE(V , u) ≡ at the moment of creating this endorsement, V was not aware of any

equivocations by S(u)

We say that a unit u is endorsed if > n∕2 validators V sent endorsements for u. Note that being

endorsed is a subjective property as it depends on the local view of a validator.

Endorsement strategy for V ∈ 

1.  starts the protocol in the relaxed mode.

2. After seeing any equivocation, V switches to the cautious modea.

3. When entering cautious mode, for all units u that V is aware of, if V is not aware of any

equivocation by S(u), V broadcasts ENDORSE(V , u).

4. When being in cautious mode, whenever V learns for the first time about a unit u and is not

aware of any equivocation by S(u), V broadcasts ENDORSE(V , u).

5. In any mode: whenever > n∕2 endorsements ENDORSE(W , u) for a unit u, from pairwise

different validators W have arrived, set the status of u as endorsed.

aThere is no explicit exit condition for the cautious mode. However, as we specify in Section 4.2, the

protocol execution is split into eras, and at the start of each era, every validator is initialized in relaxed mode.

We emphasize that the above strategy for sending endorsements is rather naive, as it sends en-

dorsements for all “honest” units. This version allows for a simple analysis, yet might be slightly

inefficient in practice. In Section 4 we show a refined strategy to achieve the same goal but sending

less endorsements.

We note that an honest validator will never endorse a pair of equivocating units as by the time

they receive the second of these units, they will know the sender to be an equivocator and thus

will not endorse. In fact, exhibiting endorsements of equivocating messages by a single validator

is verifiable proof of bad behavior by that validator for which they can be penalized. Further-

more, assuming as always that there are f < n

3
dishonest validators we can guarantee that the

maximum number of incomparable units by the same validator that are simultaneously endorsed

is 3. We will often think of endorsed units as being certified by a significant fraction of honest

validators. While the downsets of other units might be considered suspect (in that they might

contain equivocation bombs), endorsed units are considered to be more solid.

Definition 4. A unit u is said to cite another unit v naively, denoted u >n v, if u > v and there is

no endorsed unit w such that u > w ≥ v.

21

Using the notion of naive citation, we introduce a validity criterion for units that allows us to

avoid equivocation bombs.

Limited Naivety Criterion (LNC)

A unit u by validator V is considered incorrect if there is an equivocation (v1, v2) (created by some

validator W) and two units u1, u2 ≤ u created by V such that u1 >n v1 and u2 >n v2.

Since, as previously noted, endorsed units, and thus also naive citations are subjective notions,

also satisfaction of LNC by a given unit might depend on the local view of a validator. Importantly,

the status of a unit for a given validator can change only one way - if a given unit satisfies LNC,

it will never cease to satisfy it, if a unit is endorsed, it will never cease being endorsed, and if a

unit is not cited naively by another unit v, it will never be considered to be cited naively by v.

Thus it is important to suitably modify the unit reception strategy so that units upon which a given

validator cannot yet build its own unit without breaking LNC are kept in a buffer. Once such a

unit gathers enough endorsements, it can be removed from the buffer and added to the DAG6.

Perhaps the most important property of the Limited Naivety Criterion is that it allows to show

that not too many equivocating votes are contained in any message downset. More specifically,

the following theorem states that we can bound the number of units below an honest unit.

Theorem 3. Assume that f <
n

3
. If u is an N-th unit created by an honest validator, u is above

at most O(nN(1 + fequiv)) other units, where fequiv = |E(D(u))|.

The following subsection is devoted to proving Theorem 3.

3.6.2 Bounding the Number of Equivocations

We start with a simple lemma bounding the number of independent equivocations that can be

endorsed at the same time.

Lemma 5. Suppose that f <
n

3
and let � be the state of any honest validator during the protocol

execution. Suppose that C ⊆ � is a set of pairwise incomparable units created by some validator

W . If all units in C are endorsed, then |C| ≤ 3.

Proof. For each unit u ∈ C denote by Eu ⊆  the set of honest validators who endorsed u. We

have |Eu| + f > n∕2, as each such u is endorsed by assumption.

Since honest validators never endorse two incomparable units from a single validator, it follows

that the sets Eu are disjoint, hence

n − f ≥
∑

u∈C

|Eu| > |C|(n∕2 − f),

6To prevent unbounded growth of a buffer, we clear it at the end of each era as defined in Subsection 4.2

22

and since f <
n

3
, it follows that |C| < 4.

The proof of Theorem 3 relies on the following technical lemma that bounds the number of dif-

ferent equivocations that a dishonest validator can create, so that all of them are included in an

honest validator’s state.

Lemma 6. Assume that f <
n

3
. Let � be the protocol state of an honest validator (thus all units

in � satisfy the Limited Naivety Criterion). Then for any unit u ∈ �, and for any validator V , the

set of units created by V in D(u) is contained in the union of at most O(n) chains of units.

Proof. Let C be any set of pairwise incomparable units, created by single validator V in the

downset of u. We will show that |C| ≤ 3f + (n − f) + 1. Once we have that, the lemma then

follows from Dilworth’s Theorem.

First of all, there might be at most one unit u0 ∈ C such that some unit by S(u) naively cites u0
(this follows from u satisfying LNC). For clarity we remove such an u0 from C and later account

for it by adding +1 to the obtained upper bound. At this point, for each v ∈ C there exists an

endorsed unit e such that v ≤ e ≤ u. For each v ∈ C , we pick ev to be any minimal unit in the set

of all endorsed units e such that v ≤ e ≤ u.

We claim that:

• The units ev for v ∈ C are pairwise distinct.

• |{ev ∶ v ∈ C}| ≤ 3f + (n − f)

It is easy to see that the lemma follows after establishing the claims.

For the first claim, if we had that ev1 = ev2 for v1, v2 ∈ C with v1 ≠ v2, then ev1 would naively

cite two equivocations (this follows from minimality of ev1), thus would violate LNC.

For the second claim, we first note that if S(ev1) = S(ev2) for some v1, v2 ∈ C , then ev1 , ev2
must be incomparable. Indeed if we had, without loss of generality, that ev2 ≤ ev1 then ev1 would

violate LNC, as v2 <n ev2 and v1 <n ev1 . This means that, by Lemma 5 each equivocator may

contribute at most 3 units to {ev ∶ v ∈ C} and the remaining validators may contribute at most

1. In total, this gives |{ev ∶ v ∈ C}| ≤ 3f + (n − f).

Lemma 6 provides a bound on the number of messages that can be created by means of equivo-

cation spam. This is enough to prove Theorem 3.

Proof of Theorem 3. Each chain of units created by a single validator in D(u) might have length

at most O(N) since the creator of u is honest and does not add units from the future to its DAG.

By Lemma 6), each equivocator in D(u) might contribute at most O(n) chains, O(N) units each.

Thus there will be at most O(nNfequiv) units by equivocators in D(u). The remaining honest

validators produce at most O(nN) units in total, during these N rounds.

23

3.6.3 Liveness After Adding Spam Prevention Measures

While the application of Limited Naivety Criterion ensures that an attacker cannot force the honest

nodes to process too many units, it is no longer clear that it can be made to work with our original

liveness strategy as that required validators to create units above all units they are aware of, which

may well violate the Limited Naivety Criterion. We thus need to slightly modify our liveness

strategy.

First of all we increase the length of a round from R = 3Δ to R = 6Δ, the reason for that is that

for a unit sent by an honest validator at time 0, R∕3 or 2R∕3 we want not only the unit but also its

endorsements to reach each other honest validator by time R∕3, 2R∕3 or R respectively. Further,

whenever a validator is in the suspicious mode, we instruct it to directly cite only endorsed units

(validator’s own most recent unit is exempt from this rule).

For the proof of the main liveness result – Theorem 2 – to go through, we need the following

requirement to be satisfied:

Rapid Endorsement Spread: “Whenever a unit u is created by an honest validator V after GST,

after R∕3 time, each unit in D(u) that was endorsed in V ’s local view at the time of creating u is

also endorsed in the local view of every honest validator.”

To guarantee the above condition the simplest (but perhaps not the most efficient) way would be

to instruct the honest validators to broadcast a set of > n∕2 endorsements of a particular unit,

after it becomes endorsed in their local view. Various more efficient strategies here are possible,

we discuss some more practical approaches to endorsements in Section 4.

4 Practical Considerations

4.1 Dynamic Round Lengths

When defining the base version of our protocol we divided the time into fixed length rounds. The

length of a round was picked so as to make sure that in each such round, even assuming worst

case delays, a few communication “round trips” between honest validators would be possible.

On the theoretical side, the worst case message delay Δ was available from the partial synchrony

assumption in the known Δ flavour, as initially defined in [DLS88]. In practice, one can estimate

an appropriate Δ using experiments, yet there are a few dangers to be aware of when setting a

constant Δ:

• If we set the Δ too optimistic (i.e., too low) then liveness might be violated, as some mes-

sages between (high ping) pairs of validators ping can arrive too late.

• If we set the Δ too pessimistic, then the protocol might become quite slow, as during sig-

nificant portion of the round, the validators would stay idle.

24

This motivates the use of dynamic round lengths so that the protocol by itself adapts to the current

network conditions. At a theoretical layer this “approach” corresponds to the unknown Δ flavour

in the original definition of partial synchrony by [DLS88]. The theoretical model states that

there is some fixed, worst case message delay Δ, yet it is not available at the start of the protocol

execution. Even though these two models of partial synchrony are equivalent via almost black-

box reductions, we present here a custom version of our protocol for the unknown Δ model that

is optimized for practical implementations.

Rules for changing round lengths. We measure time in milliseconds since the epoch7. An

integer timestamp is called a tick. As before, without loss of generality, we assume that the

participants have synchronized clocks. We pseudorandomly assign one of the validators(i) ∈ 

to each tick i as the tick’s leader. One needs to make sure that this schedule is sufficiently random,

so that honest validators appear in this schedule frequently.

We assume that units have timestamps, i.e., for a unit u, T (u) is the time when unit u was sent.

Each validator v maintains a private parameter nv(i) ∈ ℕ (called the round exponent) that is

updated periodically. Formally, the map nv ∶ ℕ → ℕ assigns to each tick number the round

exponent that the validator v ∈  should use at this particular tick. Below we give a strategy on

how to select nv, but we always assume that nv(i) = nv(i − 1) unless i is a multiple of both 2nv(i)

and 2nv(i−1). In other words, we assume that the parameters are kept constant for time windows of

2nv(i) ticks, from j to j + 2nv(i) − 1, where j ≤ i is maximal such that it divides 2nv(i).

For a validator v ∈  a new round starts whenever the current tick i is divisible by 2nv(i) and this

round’s length is R ∶= 2nv(i). Further, for every tick i, the value i mod 2nv(i) determines the time

that has passed since the round started. For this round, this validator follows the unit reception

and creation strategy as described in Section 3.5. The leader for this round is (i0) where i0 is

the tick at which the round started.

We emphasize that (as explained below) nv, and thus also round lengths, are changed for each

validator v ∈  separately, based solely on their local view. For this reason, the rounds might

(and surely will) fall out of sync from time to time, even between honest validators. However, the

round length adjustment strategy is designed in such a way so that in practice, this happens rarely

and the round lengths will differ only by a factor of 2.

Strategy for changing nv. Our strategy is parametrized by the following numbers:

• two natural numbers nmin < nmax that determine the minimum and the maximum, respec-

tively, value of nv that we allow for validators,

• a confidence threshold t0 that is used to measure progress in finalization,

• numbers 0 < Cfail < Csucc < C and D, that specify the conditions based on which the round

exponent changes.

7Unix time: number of seconds since the beginning of 1970, UTC, but millisecond resolution is more suitable

for this purpose

25

Round Exponent Maintenance Strategy for V ∈ 

1. At tick i = 0, initialize nv(j) = nmin for all j. Initialize cntsucc = 0.

2. At tick i > 0, let m ∶= nv(i). Whenever i is divisible by 2m+1:

(a) Let bf in denote the number of blocks finalized with confidence t0 during the lastC rounds,

(b) if bf in ≤ Cfail then set nv(j) = min(m + 1, nmax), for all j ≥ i,

(c) if bf in ≥ Csucc then increment cntsucc = cntsucc + 1, otherwise set cntsucc = 0.

(d) If i is divisible by C2m+1 and cntsucc ≥ D, set nv(j) = max(m − 1, nmin), for all j ≥ i.

Set cntsucc = 0.

In practice t0 should probably be much lower than the confidence threshold used for “safety”, for

instance t0 ≈ 0.01. Even if in a single round, the block proposed by the leader gets finalized with

the lower confidence t0, if there are enough honest validators this confidence will increase in the

future, as the summit grows in height. The constants Cfail, Csucc, C,D are chosen so as to make

sure that the “correct” round exponent is learned by the validators based on the “finality rate”

feedback. Example values of these constants could be (Cfail, Csucc, C) = (10, 32, 40) and D = 3.

4.2 Eras

Since the Highway protocol is meant for creating and maintaining a blockchain, once run (initial-

ized) it is supposed to run forever, without stops. Consequently, the validators are forced to store

the whole DAG, even the units that were created at the very beginning of the protocol execution.

Erasing “old” parts of the DAG is not safe, as (likely dishonest) validators might directly cite in

their recent units some units that are very old.

When talking about the storage issue, it is important to emphasize that clearly, the blockchain must

be stored anyway, and this is a cost that is impossible to avoid. However, intuitively, nothing

should stop us from erasing old “metadata”, i.e., units that have been used to finalize certain

blocks, and thus are not useful anymore. This issue becomes all the more serious after realizing

that for large committees of validators, this “metadata” might likely require more space than the

blockchain itself. What is even worse is that such a DAG must be kept in RAM and not on disk.

The reason for that is that one must build efficient data structures over the DAG for the sake of

detecting finality and checking correctness of units (in particular the LNC). Placing such data

structures on disk instead, would cause a dramatic slowdown.

A practical solution for this issue is to divide the protocol exucution into eras. In each era, K =

1000 new blocks are added to the blockchain, and importantly a new instance of Highway is run

in every era. This means that, for instance, in era 5, we consider the block B4999 at height 4999,

finalized in era 4, as the genesis unit.

If we use eras in such a way, then the validators only need to store blocks that were finalized in

26

the previous eras and the DAG for the current era. This also helps a lot with equivocation spam

attacks, as equivocators caught in a particular era can be banned from the very beginning of the

subsequent eras. The honest nodes start a new era in the relaxed mode and thus do not need to

send endorsements because of past equivocations anymore.

One additional benefit of using eras is that it allows to change the validator set according to some

prespecified rules, and hence move the protocol towards the permissionless model.

4.3 Sending Less Endorsements

Recall that the original endorsement strategy that we introduced in Section 3.6.1 was very simple:

after seeing an equivocation, endorse every unit by non-equivocating validators. While it allows

for quite simple arguments that liveness is preserved, it also introduces a non-negligible overhead

in case when equivocations are detected in a particular era.

Below we present a refined strategy that still guarantees that no honest validator ever gets stuck

because of lack of endorsements of its own, honest units. At the same time, this strategy allows

to send much fewer endorsements.

Refined Endorsement Strategy for V ∈ 

1. Initialize the set Equivocators ∶= ∅.

2. Whenever V sees an equivocation by W , add W to Equivocators ∶= ∅.

3. For every unit u that V is aware of, such that the following conditions are satisfied, V broadcasts

ENDORSE(V , u):

(a) The creator of u, S(u) does not belong to Equivocators.

(b) There exists a validator W ∈ Equivocators such that

• W ∉ E(u),

• There is a unit w, created by W such that w ∈ D(u) but the unit u′ created by S(u),

just before u, does not cite w.

In a practical scenario, after an equivocation by a validator W is detected at round r, then after

a few rounds no honest validator will cite any new units by W anymore. The above strategy

requires, in such a case, sending endorsements only for units created in these few rounds that

happen after round r. The honest units that are created later, never cite any “new” units by W

and thus do not require endorsements.

27

4.4 Weighted Consensus

So far it has been assumed that the opinion of every validator is equally important in the process

of achieving consensus. In this subsection, we describe the modifications allowing the Highway

protocol to be run in a scenario where each validator has an associated integer weight, corre-

sponding to its voting power – a useful version for example when constructing a Proof of Stake

blockchain.

Let the sum of all validator weights equals N , and the function w(V) denotes the weight associ-

ated with validator V . In such a version, the function total being the basis for the GHOST rule

has to be replaced with the one counting the total weight of validators supporting a given option,

instead of their number. Similarly, the density condition in the definition of the summit needs to

be replaced with the version bounding total weight of the set of validators S
(
D̄(u)∩C ′

i
)
)
, instead

of their number. After these changes are introduced, Theorems 1 and 2 remain true without any

changes, as they do not deal with number of validators, and the proofs do not take advantage of

the equal validator weight.

Note that while the finality in such a modified scenario is purely a function of validator weights,

the communication complexity remain dependent on the total number of validators – every val-

idator needs to download the units of every other validator, no matter how small its weight is. For

this reason, when desigining the blockchain system, the number of validators should be consid-

ered as the main factor influencing latency and throughput, not their weights and dependencies

between them.

References

[AMN+19] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Maofan Yin. Sync

hotstuff: Synchronous smr with 2� latency and optimistic responsiveness. IACR

Cryptology ePrint Archive, 2019:270, 2019.

[Bai16] Leemon Baird. The swirlds hashgraph consensus algorithm: Fair, fast, byzantine

fault tolerance. Swirlds Tech Reports SWIRLDS-TR-2016-01, Tech. Rep., 2016.

[BG17] Vitalik Buterin and Virgil Griffith. Casper the friendly finality gadget. CoRR,

abs/1710.09437, 2017.

[BHK+20] Vitalik Buterin, Diego Hernandez, Thor Kamphefner, Khiem Pham, Zhi Qiao,

Danny Ryan, Juhyeok Sin, Ying Wang, and Yan X Zhang. Combining ghost and

casper. CoRR, abs/2003.03052, 2020.

[BKM18] Ethan Buchman, Jae Kwon, and Zarko Milosevic. The latest gossip on BFT consen-

sus. CoRR, abs/1807.04938, 2018.

28

[CL99] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In Margo I.

Seltzer and Paul J. Leach, editors, Proceedings of the Third USENIX Symposium

on Operating Systems Design and Implementation (OSDI), New Orleans, Louisiana,

USA, February 22-25, 1999, pages 173–186. USENIX Association, 1999.

[CS20] Benjamin Y. Chan and Elaine Shi. Streamlet: Textbook streamlined blockchains. In

AFT ’20: 2nd ACM Conference on Advances in Financial Technologies, New York,

NY, USA, October 21-23, 2020, pages 1–11. ACM, 2020.

[DLS88] Cynthia Dwork, Nancy A. Lynch, and Larry J. Stockmeyer. Consensus in the pres-

ence of partial synchrony. J. ACM, 35(2):288–323, 1988.

[GAG+19] Guy Golan-Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi, Benny Pinkas,

Michael K. Reiter, Dragos-Adrian Seredinschi, Orr Tamir, and Alin Tomescu. SBFT:

A scalable and decentralized trust infrastructure. In 49th Annual IEEE/IFIP Interna-

tional Conference on Dependable Systems and Networks, DSN 2019, Portland, OR,

USA, June 24-27, 2019, pages 568–580. IEEE, 2019.

[GLSS19] Adam Gagol, Damian Lesniak, Damian Straszak, and Michal Swietek. Aleph: Effi-

cient atomic broadcast in asynchronous networks with byzantine nodes. In Proceed-

ings of the 1st ACM Conference on Advances in Financial Technologies, AFT 2019,

Zurich, Switzerland, October 21-23, 2019, pages 214–228. ACM, 2019.

[KAD+09] Ramakrishna Kotla, Lorenzo Alvisi, Michael Dahlin, Allen Clement, and Edmund L.

Wong. Zyzzyva: Speculative byzantine fault tolerance. ACM Trans. Comput. Syst.,

27(4):7:1–7:39, 2009.

[MMS99] Louise E Moser and Peter M Melliar-Smith. Byzantine-resistant total ordering algo-

rithms. Information and Computation, 150(1):75–111, 1999.

[MNR19] Dahlia Malkhi, Kartik Nayak, and Ling Ren. Flexible byzantine fault tolerance. In

Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors,

Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communica-

tions Security, CCS 2019, London, UK, November 11-15, 2019, pages 1041–1053.

ACM, 2019.

[Nak08] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.

[NTT20] Joachim Neu, Ertem Nusret Tas, and David Tse. Ebb-and-flow protocols: A resolu-

tion of the availability-finality dilemma. CoRR, abs/2009.04987, 2020.

[YMR+19] Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan-Gueta, and Ittai Abra-

ham. Hotstuff: BFT consensus with linearity and responsiveness. In Peter Robinson

and Faith Ellen, editors, Proceedings of the 2019 ACM Symposium on Principles

of Distributed Computing, PODC 2019, Toronto, ON, Canada, July 29 - August 2,

2019, pages 347–356. ACM, 2019.

29

[ZRAP18] Vlad Zamfir, Nate Rush, Aditya Asgaonkar, and Georgios Piliouras. Introducing the

minimal cbc casper family of consensus protocols. 2018.

30

	1 Introduction
	2 Our Results
	2.1 Model
	2.2 Consensus in the Context of Blockchain
	2.3 Practical Challenges
	2.4 Our Contribution
	2.5 Related Work

	3 Protocol
	3.1 Building a DAG
	3.2 Voting via the GHOST Rule
	3.3 Finality Condition
	3.4 Computability of the Finality Condition
	3.5 Guaranteeing Liveness
	3.6 Communication Complexity
	3.6.1 Spam Prevention Using Endorsements
	3.6.2 Bounding the Number of Equivocations
	3.6.3 Liveness After Adding Spam Prevention Measures

	4 Practical Considerations
	4.1 Dynamic Round Lengths
	4.2 Eras
	4.3 Sending Less Endorsements
	4.4 Weighted Consensus

