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Abstract. One of the fundamental challenges that hinder further adaption of decentralized cryptocur-
rencies is scalability. Because current cryptocurrencies require that all transactions are processed and
stored on a distributed ledger – the so-called blockchain – transaction throughput is inherently limited.
An important proposal to significantly improve scalability are off-chain protocols, where the massive
amount of transactions is executed without requiring the costly interaction with the blockchain. Ex-
amples of off-chain protocols include payment channels and networks, which are currently deployed
by popular cryptocurrencies such as Bitcoin and Ethereum. A further extension of payment networks
envisioned for cryptocurrencies are so-called state channel networks. In contrast to payment networks
that only support off-chain payments between users, state channel networks allow execution of arbitrary
complex smart contracts. The main contribution of this work is to give the first full specification for
general state channel networks. Moreover, we provide formal security definitions and prove the security
of our construction against powerful adversaries. An additional benefit of our construction is the use
of channel virtualization, which further reduces latency and costs in complex channel networks.

1 Introduction

In recent years we have witnessed a growing popularity of distributed cryptocurrencies such as Bitcoin [23] or
Ethereum [33]. The underlying main innovation of these currencies is a consensus mechanism that allows their
users to maintain the so-called blockchain (or ledger). One of the most interesting potential applications of
such currencies are the microtransactions [32, 28, 21, 26], i.e., transactions of very small values (typically less
than 1 cent) that are executed instantaneously. Once implemented, they could enable many novel business
models, e.g., fair sharing of WiFi connection, or devices paying to each other in the “Internet of Things”.

Unfortunately, blockchain-based systems face inherent challenges that make it very hard, if not impossible,
to use them directly for microtransactions. Firstly, each transaction that is processed via the network has
to be stored on the blockchain. Moreover, consensus on the blockchain requires significant time to confirm
transactions, e.g., in Bitcoin confirmation takes at least around 10 minutes. This imposes a fundamental
limit on how many transactions can be processed per second (for instance, the Bitcoin network is currently
limited to process up to 7 transactions per second [6]). Finally, the miners that process transactions, ask for
fees. Once these fees surpass the actual value assigned to a transaction, micropayments become much less
attractive.

A prominent tool for addressing the above challenges are off-chain channels [5, 27, 18, 4, 19, 29, 17] that
allow two users to rapidly exchange money between each other without sending transactions to the blockchain.
Channels are implemented using so-called smart contracts, which allow to transfer money according to
complex program rules. Below we will first briefly describe this concept, and then give a short introduction
to the state of the art in off-chain channels.

Smart contracts. Informally speaking, smart contracts (or simply: “contracts”) are programmable money,
described in form of self-enforcing programs that are published on the ledger. Technically, the term “smart
contract” can have two meanings: (1) a contract code which is a static object written is some program-
ming language, and (2) a contract instance (a dynamic object that executes this code and is running on a
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blockchain, or inside of a state channel, see below). In the sequel we will often use this distinction (which
is similar to the distinction between “programs” and “processes” in operating systems). One can think of
a smart contract instance as a trusted third party to which users can send coins, and that can distribute
coins between the parties, according to conditions written in its code. Probably the best known currency
that supports contracts of an arbitrary complexity is Ethereum [33], and its most popular contract language
is Solidity. In this system, a contract instance never acts by itself, and its actions have to be triggered by the
users (who pay the so-called fees for every contract execution). The users communicate with the contract
instances using functions calls (from the contract code). An instance is deployed on the ledger by a call from
a special function called constructor. For more details on smart contracts and their formal modeling we refer
to Sec. 3.

Payment channels. Payment channels are one of the most promising proposals for addressing the scalability
challenges in cryptocurrencies. The main idea behind this technology is to keep the massive bulk of trans-
actions off-chain. To this end, the parties that want to open a channel deploy a special “channel contract”
on the blockchain and lock a certain amount of coins in it. Afterwards they can freely update the channel’s
balance without touching the ledger. The blockchain is contacted only when parties involved in the payment
channel want to close the channel, or if they disagree, in which case the channel contract handles fair settle-
ment. In the normal case, when the two parties involved in the payment channel play honestly and off-chain
transactions never hit the blockchain before the channel is closed, payment channels significantly improve on
the shortcomings of standard blockchain-based payments mentioned above: they limit the load put on the
blockchain, allow for instantaneous payments, and reduce transaction fees.

The idea of payment channels has been extended in several directions. One of the most important exten-
sions are the so-called payment networks, which enable users to route transactions via intermediary hubs.
To illustrate this concept, suppose that P1 has a payment channel with P2, and P2 has a payment channel
with P3. A channel network allows P1 to route payments to P3 via the intermediary P2 without the need
for P1 and P3 to open a channel between each other on the ledger. This reduces the on-chain transaction
load even further. The most well known example of such a system is the Ligthning network that has been
designed and implemented by Poon and Dryja over Bitcoin [27]. It is based on a technique called hash-locked
transactions, in which each transaction that is sent from P1 to P3 is routed explicitly via P2 – meaning that
P2 confirms that this transaction can be carried out between P1 and P3. For further details on hash-locked
transactions, we refer the reader to, e.g., the description of the Lightning network [27] and to Appx. A.

Virtual payment channels. An alternative technique for connecting channels has recently been proposed in
[11] under the name “channel virtualization”. Using this technique two parties can open a virtual channel
over two “extended payment channels” running on the ledger.4 Consider the example already mentioned
above, where P1 and P3 are not connected by a payment channel, but each of them has an extended
payment channel with an intermediary called P2. In contrast to connecting payment channels via hash-
locked transactions, virtual payment channels have the advantage that the intermediary P2 does not need
to confirm each transaction routed via him. As argued in [11], virtual channels can further reduce latency
and fees, while at the same time improving availability.5 To distinguish the standard channels from the
virtual ones, the former ones are also called ledger channels. In [11] the authors present only a construction
of virtual payment channels over a single intermediary hub, leaving the general construction as an open
research problem. Addressing this shortcoming is one important contribution of our work.

State channels. A further generalization of payment channels are state channels [1], which radically enrich
the functionality of payment channels. Concretely, the users of a state channel can, besides payments, execute
complex smart contracts in an off-chain way. Alice and Bob who established a state channel between each

4 Concretely, the contract representing the extended payment channel offers additional functionality to support
connecting two payment channels.

5 Availability is improved because payments via the virtual channel can be completed even if the intermediary is
temporarily off-line.

2



other can maintain a “simulated ledger for contracts” and perform the execution of contracts on it “without
registering them on the real blockchain”. This happens as long as the parties do not enter into a conflict.
The security of this solution comes from the fact that at any time parties can “register” the current off-chain
state of the channel on the real blockchain, and let the channel contract fairly finish the execution of the
contract. Examples of use cases for state channels are manifold and include contracts for digital content
distribution, online gaming or fast decentralized token exchanges.

In contrast to payment channels, there has been only little work on general state channels.6 One prominent
project whose final goal is to implement general state channels over Ethereum is called Raiden [31], but
currently it only supports simple payments, and a specification of protocols for full state channel networks
has not been provided yet. The concept of an off-chain state maintained by parties was formalized in the
work of Miller et al. [22], where it is used as a main building block for the payment channel construction.
In contrast to [22], our general state channel construction allows two parties to have a virtual state channel
whose opening does not require any interaction with the blockchain. This significantly improves the time
complexity and the cost of a state channel creation. To our best knowledge, the only work considering longer
general state channels is [9] recently published by Coleman et al. and developed independently from our work.
The work of [9] lacks formal definitions and security proofs. On the other hand, it includes several features
useful for practical implementation. We are in contact with the authors of [9] and planing collaboration to
further improve our construction and move provably secure state channel networks closer to practice.

1.1 Our contribution

As described above, until now there has not been any satisfactory formal construction or security definition
of general state channel networks. The main contribution of this work is to address this shortcoming by
providing the first construction for building state channel networks of arbitrary complexity together with
a formal definition and security analysis. Our construction (i) allows users to run arbitrary complex smart
contracts off-chain, and (ii) permits to build channels over any number of intermediaries. Below we describe
our core ideas in more detail.

Constructing state channel networks. In order to construct the general state channel networks, we follow a
modular recursive approach where virtual state channels are built recursively on top of ledger or other –
already constructed – virtual state channels. For a high-level description of our recursive approach see Sec. 2
(and Fig. 1 therein). As long as everybody is honest, the intermediaries in the virtual channel are contacted
only when the channel is opened and when it is closed (and the ledger is never contacted). On the other
hand, let us stress that no intermediary can lose its coins even if all other parties are dishonest and every
user of a virtual state channel has the guarantee that he can execute a contract created in a virtual state
channel even if all other parties collude.

Modeling state channel networks and security proofs. In addition to designing the first protocols for state
channel networks, we develop a UC-style model for “state channel networks” – inspired by the universal
composability framework introduced in the seminal work of Canetti [7]. To this end, similarly to [11], we

model money via a global ledger ideal functionality L̂ and describe a novel ideal functionality for state
channel networks that provide an ideal specification of our protocols. Using our model, we formally prove
that our protocols satisfy this ideal specification. Key challenges of our analysis are (i) a careful study of
timings that are imposed by the processing of the ledger, and (ii) the need to guarantee that honest parties
cannot be forced to lose money by the fact that the contracts are executed off-chain even if all other parties
collude and are fully malicious.

We emphasize that in the context of cryptocurrencies, a sound security analysis is of particular importance
because security flaws have a direct monetary value and hence, unlike in many other settings, are guaranteed

6 A state channel that is not application specific and allows to run arbitrarily complex contracts, is called a general
state channel. Since we consider only general state channels in this work, we usually omit the word “general” for
brevity.
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to be exploited. The later is, e.g., illustrated by the infamous attacks on the DAO [30]. Thus, we believe that
before complex off-chain protocols are massively deployed and used by potentially millions of users, their
specification must be analyzed using formal methods as done in our work using UC-style proofs.

Optimistic vs. pessimistic execution times. While constructing our protocols we will provide the “optimistic”
and “pessimistic” execution times. The “optimistic” ones refer to the standard case when all parties behave
honestly. In the optimistic case all our protocols allow for instantaneous off-chain contract execution, and a
possible delay depends only on the latency of the network over which parties communicate. The “pessimistic”
case corresponds to the situation when the corrupt parties try to delay the execution as much as they can by
forcing contract execution on the blockchain. In our solution the pessimistic execution times grow linearly
with the number of intermediaries ` involved. Notice that these pessimistic times can in reality happen only
in the unlikely case when all but one party are corrupt. Since the main goal of this paper is to introduce
the general framework, and not to fine-tune the parameters, we leave it as an important direction for future
work to improve our construction and optimize these timings, possibly using the techniques of [22].

Further related work One of the first proposals for building payment channels is due to Decker [10], who in
particular also introduced a construction for duplex payment channels. An alternative proposal for payment
channel networks has been given by Miller et al. [22]. In this work, the authors show how to reduce the
pessimistic timings to constant time (i.e., independent of the length of the channel path). It is an interesting
question for future work to combine the techniques from [22] with the channel virtualization. Several works
focus on privacy in channel networks, path finding or money re-balancing in payment channels [19, 29, 17]. In
particular, [22, 19, 11] also provide a UC-based security analysis of their constructions. Channel constructions
based on the sequence number maturity (that we also use in this paper) have been mentioned already in [27],
and recently described in more detail (as “stateful duplex off-chain micropayment channels”) by Bentov et
al. in [4]. Another challenge in building and maintaining complex channel networks is the fact that parties
have to continuously watch what happens on the blockchain regarding the state of their channels. This
problem can be addressed using so-called watchtowers [25, 20], to which users can outsource the task of
watching the blockchain.

1.2 Organization of the paper

We begin with an informal description of our state channel construction in Sec. 2, where we explain how
state channels are created and how they can be used. The ideal specification of our construction is presented
in Sec. 4 and the full description of the state channel protocols is given in Sec. 6 (for ledger state channels)
and in Sec. 7 (for virtual state channels). We introduce the necessary formalism and present security and
efficiency properties required from a general state channel in Sec. 3. Our modular approach of building state
channels is discussed in Sec. 5. Finally, we conclude in Sec. 8.

2 State channel construction

Before we proceed to the more technical part of this work, let us give an intuitive explanation of our virtual
state channel construction. We would like to emphasize that the description of our approach as presented
in this section is very simplified and excludes many important technicalities. Formal definitions, detailed
explanations of our protocols, and their full description are presented later in this paper (see Sections 3–5
and Appendices 6 and 7). As already mentioned in Sec. 1.1, we follow a recursive approach, which is shown
for the case of 6 parties on Fig. 1 where we consider parties P1, . . . , P6, with each Pi being connected with
Pi+1 via a ledger state channel Pi ⇔ Pi+1. To build a virtual state channel γ4 := P1 ↔ P6, we first create
a virtual state channel γ1 := P1 ↔ P3 using ledger state channels P1 ⇔ P2 and P2 ⇔ P3. Then a virtual
state channel γ2 := P4 ↔ P6 is created using ledger state channels P4 ⇔ P5 and P5 ⇔ P6. The other virtual
state channels are created recursively, as follows: first, channel γ3 := P1 ↔ P4 is created using the virtual
state channel γ1 and the ledger state channel P3 ⇔ P4, and then channel γ4 is created using the virtual state
channels γ3 and γ2.
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P1 P2 P3 P4 P5 P6

γ1

γ3

γ4

γ2

Fig. 1: Example of a recursive construction of a virtual state channel γ4 (of length 5) between P1 and P6.

Ledger state channels – an overview. The terminology for ledger state channels is given in Sec. 3. and
their construction can be found in Sec. 6. Below we explain only the main idea of the ledger state channel
construction. A ledger state channel δ between Alice and Bob allows them to execute off-chain instances of
some contract code C. An example could be a lottery game contract Clot, where each user deposits 1 coin
and then one user is randomly chosen to receive 2 coins. Technically, this is implemented using the standard
cryptographic method based on commitment schemes (see, e.g., [2]), where the execution of the contract
happens in the following steps: first the parties deposit their coins in the contract instance (call the resulting
initial state of the game G0)7, then Alice sends to the contract her commitment to a random bit rA ∈ {0, 1}
(which results in state G1), afterwards Bob sends his random bit rB ∈ {0, 1} to the contract (denote the
resulting state G2). Then, Alice opens her commitment, the final state G3 is computed, and 2 coins are given
to Alice if rA ⊕ rB = 0, or to Bob (otherwise). Finally, the contract instance terminates. Technically, the
previous steps are implemented via function calls. For example: sending a bit rB by Bob can be implemented
as function call Reveal(rB) (where Reveal is a function available in Clot that stores rB in the storage of the
contract).

As described in Sec. 1, two parties create a ledger state channel by deploying a state channel contract,
(SCC), in which each party locks some amount of coins. Once the ledger state channel δ is established, parties
can open instances of the contract code C in the channel and execute them. For example the parties can open
a channel in which each of them locks 10 coins and then run several instances of the lottery contract Clot in
this channel. Every contract instance locks 1 coin of each party (from the coins that are locked in channel
δ). A locked coin cannot be used for any other contract instance in δ. Once the contract instance terminates,
the coins are unlocked and distributed back to the channel δ according to the rules of C. The state channel
contract on the blockchain guarantees that if something goes wrong during the off-chain execution (parties
disagree on a state of some contract instance, one of the parties stops communicating, etc.), they can always
fairly resolve their disagreement and continue the execution via the state channel contract on the blockchain.

Off-chain contract execution in the ledger state channels. Let us now take a closer look how the off-chain
contract execution is done via the ledger state channel. Let C be a contract code, and let G denote the
(dynamically changing) instance of C that is executed in δ. To deploy G both parties agree on the initial state
G0 of G. The parties then exchanging signatures on (G0, 0). The rest of the execution is done by exchanging
signatures on further states of G together with indices w that denote the version numbers. Assume that
Alice wants to call a function f (with some parameters m) in the contract instance. Let (Gw, w) be the last
state of the contract instance G on which the parties exchanged their signatures. She then (1) computes
locally the new value Gw+1 of the state, by calling f(m) on Gw, and then (2) sends signed (Gw+1, w + 1)

7 A reader familiar with Ethereum may object that “simultaneous” contract instance deployment is not allowed (as
Ethereum does not support “multi-input” transactions). We stress that the example above illustrates a contract
that is run “inside of a channel” (not on blockchain) and is compatible with our construction.
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together with f and m to Bob. Bob checks if Alice’s computation was correct, and if yes then he replies with
his signature on (Gw+1, w+ 1). When the instance G terminates, the coins resulting from this execution are
distributed between the parties according to the outcome of the game.

For example if G is an instance of the lottery contract Clot described above then the states of the game
are G0, G1, G2 and G3. Since the first move of the game is done by Alice, she locally computes the new
state G1 and sends it to Bob together with her commitment to rA and her signature on (G1, 1). Then Bob
replies with his signature on (G1, 1). Thereafter, Bob makes his move, i.e., he computes G2, sends signed
(G2, 2) together with his random bit rB to Alice, and so on. Note that the interaction of the parties with
the contract instance is always “local”, i.e., the parties themselves compute the new states of G and then
just exchange signatures.

As long as both Alice and Bob are honest, everything is done without any interaction with the blockchain.
If, however, one party cheats (e.g. by refusing to communicate), the other party can always ask the SCC

contract to finish the game. The version number w is used to make sure that SCC gets always the latest state
of the game. More concretely: the contract is constructed in such a way that if a malicious party submits an
old state, then the other party can always “overwrite” this state by providing a signed state of the contract
instance with a higher version number. Once the SCC contract learns the latest state Gw, the game can be
finished (starting from Gw) on-chain via SCC.

Virtual state channels – an overview. As described above, the virtual state channels are constructed recur-
sively “on top” of the ledger state channels. Suppose that Alice and Bob want to run some contract code C

(e.g. the lottery game) in an off-chain way in γ. This time, however, they do not have an open ledger state
channel between each other. Instead, both Alice and Bob have a channel with a third party, which we call
Ingrid. Denote these channels α and β respectively. With the help of Ingrid but without interacting with the
blockchain, Alice and Bob can open a virtual state channel γ that has the same functionality and provides
the same guarantees as if it would be a ledger state channel between them. In particular, Alice and Bob are
allowed to create a contract instance of C in their channel γ and execute it just by communicating with each
other (i.e. play their game without talking to any third party or the blockchain).

Recall that in case of the ledger state channels every dispute between Alice and Bob is resolved by the
state channel contract, SCC. For the virtual state channel γ the role of such a “judge” is played by Ingrid.
The main difference from the previous case is that, unlike SCC (that is executed on the ledger), Ingrid cannot
be trusted, and in particular, she may even collude with a corrupt Alice or Bob. In order to prevent parties
from cheating, we create special contracts in each of the ledger state channels α and β. Their code will be
called “virtual state channel contract” (VSCC) and their instances will be denoted να and νβ , respectively.
The instances να provides security guarantees for Alice, and νβ for Bob. In addition, both contract instances
together provide guarantees for Ingrid. The contract code VSCC has to depend on the code C since it needs
to interpret the code C in case the parties enter into a dispute (see below). Note that SCC depends on VSCC,
and hence, indirectly, on C. This dependence is summarized in Fig. 2.

Creating the virtual state channel. Let us explain the virtual state channel creation in more detail. In the
first step Alice and Bob inform Ingrid about their intention to use her as an intermediary for their virtual
state channel γ. Alice does so by proposing to open an instance να of VSCC in the channel α. This instance
will contain all information about the virtual state channel γ (for example: how many coins each party wants
to lock in the channel). In some sense να can be viewed as a “copy” of the virtual state channel γ in which
Ingrid plays the role of Bob — for example, if the initial balance in γ is 1 coin for Alice and 5 coins for Bob,
then Alice would lock 1 coin and Ingrid 5 coins in να. Symmetrically, Bob proposes a new instance νβ of
VSCC in the ledger state channel β that can be viewed as a “copy” of the virtual state channel γ in which
Ingrid plays the role of Alice. In the example above, Ingrid would lock 1 coin and Bob 5 coins in νβ . If Ingrid
receives both proposals and she agrees to be the intermediary of the virtual state channel γ, she confirms
both requests.

Contract execution in the virtual state channel γ. The off-chain contract execution in the virtual state
channel is performed exactly in the same way as in case of the ledger state channels (see paragraph “Off-
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Alice Ingrid Bob

Blockchain

α
VSCC

β
VSCC

γ C

SCC SCC

Fig. 2: Construction of a virtual state channel γ1 of length 2 in which a contract instance of C is created.

chain contract execution in the ledger state channels” above). That is, as long as both Alice and Bob are
honest, they execute a contract instance G by exchanging signatures on new versions of the game states
without talking to Ingrid at all, and without updating να and νβ . The case when Alice and Bob disagree
needs to be handled differently, since the parties cannot contact the blockchain contract, but have to resolve
this situation using the channels α and β that they have with Ingrid. Consider, for example, the situation
when, in the scenario described above, Bob is malicious and stops communicating with Alice, i.e. he does
not send back his signature on (Gw+1, w + 1). In this situation, Alice has to make her move “forcefully” by
using the channel α she has with Ingrid. More concretely, she will execute the contract instance να. It is
very important to stress that the virtual state channel construction uses this instance in a black-box way,
i.e., when describing the protocols for virtual state channel execution this protocol uses the execution of να
in a black-box way via the interface of the underlying channel. Internally, of course this is done by a protocol
between Alice and Ingrid realizing the off-chain execution of να (as long as Alice and Ingrid are honest).

First, Alice starts the “state registration procedure”. The goal is to let να know that she has a disagree-
ment with Bob, and to convince να that Gw is the latest state of the contract instance G. To this end, she
sends to να the state (Gw, w, sB), where sB is Bob’s signature on (Gw, w). She does it by calling a function
“register” (see Step 1 on Fig. 3). Of course να has no reason to believe Alice that this is really the latest state
of G. Therefore να forwards this message to Ingrid8, that, in turn, calls a function “register(Gw, w, sB)” of
the contract instance νβ in channel β (see Step 2). Bob now replies (in Step 3) to νβ with his latest version of
the contract instance (i.e. he calls “register(Gw′ , w

′, sA)”, where sA is Alice’s signature). When Ingrid learns
about Bob’s version from νβ , she forwards this information to να (see Step 4). Suppose that w > w′, i.e.,
Alice is honest, and Bob is cheating by submitting and old version of the instance (the other case is handled
analogously). Then, both να and νβ decide that (Gw, w) is the latest version of G (i.e. they “register Gw”).

From the point of view of Ingrid, the most important security feature of this procedure is that there is
a consensus among να and νβ about the latest state of G (even if Alice and Bob are both dishonest and
playing against her). This consensus will be maintained during the entire execution of G in instances να and
νβ . This is important, as otherwise she could lose coins.9 This invariant will be maintained throughout the
rest of the “forced execution procedure”.

After the state registration is over, Alice calls (in Step 5, Fig. 3) a function “execute(f(m))” of να,
“asking” να to execute f(m) on the contract instance G starting from the registered state (Gw, w). Since
we want to maintain the “consensus invariant” mentioned above, we cannot simply let να perform this
execution immediately after it receives this call. This is because some contracts may allow both parties to

8 Recall again that this execution is realized by a protocol between Alice and Ingrid.
9 Imagine, e.g, that the final state of G in να is that Alice gets all the coins locked in G, and the final state of G in
νβ is that Bob gets all the coins locked in G. Then Ingrid loses these coins in both channels α and β.
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call functions at the same time10, and Bob could simultaneously call some other function execute(f ′(m′)) of
νβ . This situation is especially subtle because function execution is generally not commutative, i.e., executing
f(m) and then f ′(m′) can produce a different result than doing it in the different order. Consequently, this
could result in να and νβ having different states of their local copies of γ. We solve this problem by delaying
the execution of f(m) until it is clear that no other function can be executed before f(m). More precisely,
the contract code VSCC is defined in such a way that f(m) is only stored in the storage of the contract
instance νA, resp. νB together with a time stamp of storage. The internal execution of f(m) in νA, resp. νB ,
is performed only when the contract instance is being terminated (which happens when then virtual state
channel γ is being closed).

Let us emphasize that the purpose of the description above is to explain the concepts and main ideas
of our construction. The final protocol, however, works slightly differently due to several optimizations. For
example, in order to decrease the pessimistic time complexity, the registration phase and the force execution
phase for virtual state channels are run in parallel (i.e. Step 1 and Step 5 are happening in the same round).
We refer the reader to Sec. 7 for the full description of our protocol.

Alice BobIngrid
α β

γ

G

να νβ

1.

register
(Gw, w, sB)

2.

register
(Gw, w, sB) 3.

register
(Gw′ , w

′, sA)

4.

register
(Gw′ , w

′, sA)5.

execute
(f(m))

6.

execute
(f(m))

Fig. 3: Illustration of the forced execution process from our example in which Alice and Bob have a virtual state
channel γ in which they opened a contract instance. Only the function calls are shown (the messages sent by the
contracts are omitted).

Applying recursion. As already highlighted earlier, longer virtual state channels are constructed recursively.
The key observation that enables this recursion is that the state channels α and β that are used to build γ
are accessed in a “black-box” way. In other words, the only property of α and β needed in the construction of
γ is that one can execute off-chain contracts in them. This “black-box” property guarantees that our virtual
state channel construction works also if the channels α and β are virtual (not ledger), or in case one of them
is virtual, and the other one is ledger.

Let us illustrate this by taking a look again at the situation depicted in Fig. 1. Consider first the virtual
state channel γ3 – a virtual state channel of length 3 build on top of a virtual state channel γ1 of length 2
and the ledger state channel P3 ⇔ P4. Assume that C is the contract code whose instances can be opened
in γ3. Following the construction described earlier in this section, γ3 can be created if both the underlying

10 Note that it is not the case of the Clot contract, since there its always clear which party is expected to “make a
move” in the game. However, in general, we do not want to have such restrictions on contracts in this paper.
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state channels γ1 and P3 ⇔ P4 support contract instances of the virtual state channel contract VSCC which
depends on C. This, in particular, implies that the ledger state channels P1 ⇔ P2 and P2 ⇔ P3, on top of
which the virtual state channel γ1 is created, must support contract instances of the virtual state channel
contract VSCC′ which depends on VSCC (thus indirectly also on C).

This reasoning can be repeated for longer channels. For example, if C is a contract code whose instances
can be opened in the virtual state channel γ4, then contract instances of VSCC must be supported by both
γ2 and γ3, contract instances of VSCC′ must be supported by γ1, P3 ⇔ P4, P4 ⇔ P5 and P5 ⇔ P6. Finally,
contract instances of the virtual state channel contract VSCC′′, which depends on VSCC′, must be supported
by the ledger state channels P1 ⇔ P2, P2 ⇔ P3. More details of this recursion, including the analysis of
pessimistic and optimistic timing, are provided in further sections. Let us just mention here that in order
to achieve linear pessimistic time complexity (in the channel length), our construction assumes that virtual
state channels are built in a balanced way as in Fig. 1 (i.e. the two state channels used to build a virtual
state channel have approximately the same length).

The notion of time In the description above we ignored the notion of time. This was done to simplify this
informal description. We define this notion in the technical part of the paper (see Sec. 3.3). In our construction
parties are always aware of the current time, and they pass the time information to the contract functions
in the state channels. Time is modeled as a natural number, and the time unit is called a round (think of it
as 1 second, say).

Key features of our construction. An important property of our construction and our model is that we
support full concurrency. That is, we allow several virtual state channels to be created simultaneously over
the same ledger state channels, and allow parties to be involved in several concurrent executions of (possibly
complex) contracts. This is possible because our ledger state channels can store and execute several contracts
“independently” (i.e., these are multi-contract state channels).

Another important feature of our modular construction is that it naturally allows for building channels
via multiple (possible incompatible) cryptocurrencies as long as they have a sufficiently complex scripting
language (in particular, they allow to deploy a state channel contract). For illustration, consider Alice having
a ledger state channel with Ingrid in cryptocurrency called “A-coin”, and Bob having a ledger state channel
with Ingrid in cryptocurrency called “B-coin”. Now, Alice and Bob can build a virtual state channel over
Ingrid, where Alice (resp. Bob) is oblivious of the details of B-coin (resp. A-coin). This makes sense as long
as the exchange rate between the currencies does not change too much during the lifetime of the virtual
channel. Note that, since the virtual channel opening and closing does not require interacting with the ledger,
the lifetime of a virtual state channel can be made very short (minutes or hours). In addition, virtual state
channels also improve on privacy. This is the case because channel updates are fully P2P and do not require
involvement of intermediaries.

Finally, we point out that our concept of higher-level channel virtualization has the key feature that it
adds further “layers of defense” against malicious parties before honest users need to communicate with the
blockchain. Consider, for example, the situation shown in Fig. 1. Even if P6 and the intermediary P4 in the
virtual state channel γ4 are corrupt, then P1 can resolve possible conflicts via the intermediary P3 using the
virtual state channel γ1, i.e. P1 does not need to communicate with the ledger.

3 Definitions and Security model

In the sequel, following [11], we present tuples of values using the following convention. The individual values
in a tuple T are identified using keywords called attributes: attr1, attr2, . . .. Strictly speaking an attribute tuple
is a function from its set of attributes to {0, 1}∗. The value of an attribute attr in a tuple T (i.e. T (attr)) will
be referred to as T.attr. This convention will allow us to easily handle tuples that have dynamically changing
sets of attributes. We assume that (Gen, Sign,Vrfy) is a signature scheme that is existentially unforgeable
against a chosen message attack (see, e.g., [15]). The ECDSA scheme used in Ethereum is believed to satisfy
this definition.
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3.1 Definitions of contracts and channels

We now present our syntax for describing contracts and channels. The notation presented in this section
can be viewed as an extension of the one used in [11]. In the rest of this paper we assume that the set
P = {P1, . . . , Pn} of parties that use the system is fixed.

Contracts We consider only contracts executed between two parties. A contract storage is an attribute tuple
σ that contains at least the following attributes: (1) σ.userL, σ.userR ∈ P that denote the users involved in
the contract, (2) σ.locked ∈ R≥0 that denotes the total amount of coins that is locked in the contract and (3)
σ.cash : {σ.userL, σ.userR} → R that denotes the amount of coins that the users have freely available. It must
hold that σ.locked ≥ σ.cash(σ.userL)+σ.cash(σ.userR). Let us explain the difference between locked coins and
freely available coins as well as the above inequality on a concrete example. Assume that parties are playing
a game where each party initially invests 5 coins. During the game, parties make a bet, where each party
puts 1 coin in the “pot”. Now the amount of coins locked in the game did not change, it is still equal to 10
coins; however, the amount of freely available coins decreased (each party has only 4 freely available coins).
In addition to the attributes mentioned above, a contract storage may contain other application-specific
data.

We will now define formally the notion of contract code that was already described informally in Sec. 1.
Formally a contract code consists of some functions (in Ethereum they are written in Solidity) that operate
on contract storage. The set of possible contract storages is usually restricted (e.g. the functions expect that
it has certain attributes defined). We call the set of restricted storages the admissible contract storages and
typically denote it Λ.

Formally, we define a contract code as a tuple C = (Λ, g1, . . . , gr, f1, . . . , fs), where Λ are the admissible
contract storages and g1, . . . , gr are functions called contract constructors, and f1, . . . , fs are called contract
functions. Each contract constructor gi is function that takes as input a tuple (P, τ, z), with P ∈ P, τ ∈ N,
and z ∈ {0, 1}∗, and produces as output an admissible contract storage σ or a special symbol ⊥ (in which
case we say that the contract construction failed). The meaning of these parameters is as follows: P is the
identity of the party that called the function, τ is the current round (see Sec. 3.3 for more on how we model
time and rounds), and z is used to pass additional parameters to gi. The constructors are used to create a
new instance of the contract. If the contract construction did not fail, then gi(P, τ, z) is the initial storage
of a new contract instance.

Each contract function fi takes as input a tuple (σ, P, τ, z), with σ ∈ Λ being an admissible contract
storage, P ∈ {σ.userL, σ.userR}, τ ∈ N and z ∈ {0, 1}∗ (the meaning of this parameters is as before). It
outputs a tuple (σ̃, addL, addR,m), where σ̃ is the new contract storage (that replaces contract storage σ
in the contract instance), values addL, addR ∈ R≥0 correspond to the amount of coins that were unlocked
from the contract storage to each user (as a result of the execution of fi), and m ∈ {0, 1}∗ ∪ {⊥} is an
output message. If the output message is ⊥, we say that the execution failed (we assume that the execution
always fails if a function is executed on input that does not satisfy the constraints described above, e.g., it is
applied to σ that is not admissible). If the output message m 6= ⊥, then we require that σ̃ is an admissible
contract storage and the attributes userL and userR in σ̃ are identical to those in σ. In addition, it must hold
that addL + addR = σ.locked− σ̃.locked. Intuitively, this condition guarantees that executions of a contract
functions can never result in unlocking more coins than what was originally locked in the contract storage.

As described in Sec. 1 a contract instance represents an instantiation of a contract code. Formally, a
contract instance is an attribute tuple ν with a contract storage and code, where ν.code = (Λ, g1, . . . , gr,
f1, . . . , fs) is a contract code, and ν.storage ∈ Λ is a contract storage.

Ledger state channel. We next present our terminology for ledger state channels, which is inspired by the
notation for payment channels used in [11]. Formally, a ledger state channel γ is defined as an attribute tuple
γ := (γ.id, γ.Alice, γ.Bob, γ.cash, γ.cspace). We call the attribute γ.id ∈ {0, 1}∗ the identifier of the ledger state
channel. Attributes γ.Alice ∈ P and γ.Bob ∈ P are the identities of parties using the ledger state channel
γ. For convenience, we also define the set γ.end–users := {γ.Alice, γ.Bob} and the function γ.other–party
as γ.other–party(γ.Alice) := γ.Bob and γ.other–party(γ.Bob) := γ.Alice. The attribute γ.cash is a function
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mapping the set γ.end–users to R≥0 such that γ.cash(T ) is the amount of coins the party T ∈ γ.end–users has
locked in the ledger state channel γ. Finally, the attribute γ.cspace is a partial function that is used to describe
the set of all contract instances that are currently open in this channel. It takes as input a contract instance
identifier cid ∈ {0, 1}∗ and outputs a contract instance ν such that {ν.storage.userL, ν.storage.userR} =
γ.end–users. We will refer to γ.cspace(cid) as the contract instance with identifier cid in the ledger state
channel γ.

Virtual state channel. Formally, a virtual state channel γ is a tuple γ := (γ.id, γ.Alice, γ.Bob, γ.Ingrid,
γ.subchan, γ.cash, γ.cspace, γ.length, γ.validity). The attributes γ.id, γ.Alice, γ.Bob, γ.cash and γ.cspace, are
defined as in the case of a ledger state channel. The same holds for the set γ.end–users and the function
γ.other–party. The new attribute γ.Ingrid ∈ P denotes the identity of the intermediary of the virtual state
channel. For technical reasons (see Sec. 7.2 on Page 31), we restrict γ.cspace for virtual state channels to
contain only a single contract instance. We emphasize that this is not a restrictions of the functionality since
ledger state channels support an arbitrary number of contract instances, and hence we can build any number
of virtual state channels.

The attribute γ.subchan is a function mapping the set γ.end–users to {0, 1}∗. The value of γ.subchan(γ.Alice)
equals the identifier of the ledger/virtual state channel between γ.Alice and γ.Ingrid. Analogously for the value
of γ.subchan(γ.Bob). We often call these channels the subchannels of the virtual state channel γ. The at-
tribute γ.validity denotes the round in which the virtual state channel γ will be closed (see Sec. 3.3 for more
on the notion of rounds). The reason to have this parameter is to ensure that the channel γ will not remained
open forever. Otherwise γ.Ingrid could have her money blocked forever, as (unlike γ.Alice and γ.Bob) she
cannot herself request the channel closing. Finally, the attribute γ.length ∈ N>1 refers to the length of the
virtual state channel, i.e., the number of ledger state channels over which it is built. For example in Fig. 1
(see Page 5) we have: γ1.length = 2, γ2.length = 2, γ3.length = 3, γ4.length = 5. Sometimes it will be
convenient to say that ledger state channels have length one.

3.2 Security and efficiency goals

Before presenting our formal security model in Sec. 3.3, let us start by listing some security guarantees that
are desirable for a state channel network. In the following description, if it is not important whether γ is
ledger state channel or a virtual state channel, and hence we will refer to γ as a state channel.

(1) Consensus on creation: A state channel γ can be successfully created only if all users of γ agree with
its creation.

(2) Consensus on updates: A contract instance in a state channel γ can be successfully updated (this
includes also creation of the contract instance) only if both end-users of γ agree with the update.

(3) Guarantee of execution: An honest end-user of a ledger state channel γ can execute a contract
function f of a created contract instance in any round τ0 on input value z even if the other end-user of
γ is corrupt. This property holds also for virtual state channels with the restriction that τ0 < γ.validity.

(4) Balance security: The intermediary of a virtual state channel γ never loses coins even if both end-users
of γ are corrupt.

While property (4) provides a strong monetary security guarantee to the intermediary of a virtual state
channel, the guarantees for the end-users given by properties (2) and (3) only ensure that party can not be
forced to create a contract instance and that contract instances can be executed at any time. We emphasize
that this is similar to what is guaranteed by the ledger to on-chain contracts. Concretely, this means that
if the contract rules allow that a certain end-user may lose money (e.g., by losing the lottery as described
in the example from Sec. 2), then this is not in violation with the security properties guaranteed by a state
channel network.

In addition to the security properties, we identify the following two efficiency goals. Below, by constant
number of rounds we mean that the required rounds for executing the procedure is independent of the
channel length and the ledger delay ∆ (looking ahead, the parameter ∆ models the fact that changes on a
blockchain come with a certain delay, see Sec. 3.3 for more details).
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(1) Constant round optimistic update/execute: In the optimistic case when both end-users of a state
channel γ are honest, they can update/execute a contract instance in γ within a constant number of
rounds.

(2) Constant round virtual state channel creation: Successful creation of a virtual state channel γ
takes a constant number of rounds.

3.3 Our model

To formally model the security of our construction, we use a UC-style model following the works of [3, 11]
that consider protocols that operate with coins.11 In particular, our model uses a synchronous version of
the global UC framework (GUC) [8] which extends the standard UC framework [7] by allowing for a global
setup.

Protocols and adversarial model. We consider an n-party protocol π that runs between parties from the set
P = {P1, . . . , Pn} which are connected by authentic communication channels. A protocol is executed in the
presence of an adversary Adv that takes as input a security parameter 1λ (with λ ∈ N) and an auxiliary
input z ∈ {0, 1}∗, and who can corrupt any party Pi at the beginning of the protocol execution (so-called
static corruption). By corruption we mean that Adv takes full control over Pi including learning its internal
state. Parties and the adversary Adv receive their inputs from a special party – called the environment Z –
which represents anything “external” to the current protocol execution. The environment also observes all
outputs returned by the parties of the protocol. In addition to the above entities, the parties can have access
to ideal functionalities G1, . . . ,Gm. In this case we say that the protocol works in the (G1, . . . ,Gm)-hybrid
model.

Modeling communication and time. We assume a synchronous communication network, which means that
the execution of the protocol happens in rounds. Let us emphasize that the notion of rounds is just an
abstraction which simplifies our model (see, e.g, [13, 14, 24, 16] for a formalization of this model and its
relation to the model with real time). Whenever we say that some operation (e.g. sending a message or
simply staying in idle state) takes at most τ ∈ N ∪ {∞} rounds we mean that it is up to the adversary to
decide how long this operation takes (as long as it takes at most τ rounds). Let us now discuss the amount of
time it takes for different entities to communicate with each other. The communication between two parties
Pi takes exactly one round. All other communication – for example, between the adversary Adv and the
environment Z – takes zero rounds. For simplicity we assume that any computation made by any entity
takes zero rounds as well.

Handling coins. We follow [11] and model the money mechanics offered by crypotcurrencies such as Bitcoin

or Ethereum via a global ideal functionality L̂ using the global UC (GUC) model [8]. The state of the ideal

functionality L̂ is public and can be accessed by all parties of the protocol π, the adversary Adv and the
environment Z. It keeps track on how much money the parties have in their accounts by maintaining a
vector of non-negative (finite precision) real numbers (x1, . . . , xn), where each xi is the amount of coins that
Pi owns.12

The functionality L̂ is initiated by the environment Z that can also freely add and remove money in user’s
accounts, via the operations add and remove. While parties P1, . . . , Pn cannot directly perform operations
on L̂, the ideal functionalities can carry out add and remove operations on the L̂ (and hence, indirectly, Pi’s

can also modify L̂, in a way that is “controlled” by the functionalities). Every time an ideal functionality

issues an add or remove command, this command is sent to L̂ within ∆ rounds, for some parameter ∆ ∈ N.
The exact round when the command is sent is determined by the adversary Adv. The parameter ∆ models
the fact that in cryptocurrencies updates on the ledger are not immediate. We denote a ledger functionality

L̂ with maximal delay ∆ by L̂(∆) and an ideal functionality G with access to L̂(∆) by GL̂(∆). The ledger

functionality L̂ is formally defined in Fig. 4.

11 Throughout this work, the word coin refers to a monetary unit.
12 This is similar to the concept of a safe of [3].
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Functionality L̂

Functionality L̂, running with parties P1, . . . , Pn and the environment Z, gets as input (x1, . . . , xn) ∈ Rn≥0 (where
R≥0 are finite-precision non-negative reals). It stores the vector (x1, . . . , xn) and accepts queries of following
types:

Adding money

Upon receiving a message (add, sid , Pi, y) from Z (for y ∈ R≥0) set xi := xi + y. We say that y coins are added

to Pi’s account in L̂.

Removing money

Upon receiving a message
(
remove, sid , {(Pij , yij )}tj=1

)
(for some t ∈ {1, . . . , n}) and yij ∈ R≥0):

– Check if for every j ∈ {1, . . . , t} we have that xij ≥ yij ; if not then reply with a message (nofunds, sid) and
stop.

– Otherwise for j ∈ {1, . . . , t} let xij := xij − yij . We say that yi1 , . . . , yit coins were removed from the

accounts of Pi1 , . . . , Pit (resp.) in L̂.

Fig. 4: The ledger functionality L̂.

The GUC-security definition. Let π be a protocol working in the G-hybrid model with access to the global
ledger L̂(∆). The output of an environment Z interacting with a protocol π and an adversary Adv on input

1λ and auxiliary input z is denoted as exec
L̂(∆),G
π,Adv,Z(λ, z). If π is a trivial protocol in which the parties simply

forward their inputs to an ideal functionality F , then we call the parties dummy parties, the adversary a

simulator Sim, and we denote the above output as ideal
L̂(∆)
F,Sim,Z(λ, z).

To simplify the description of our protocols and the ideal functionalities, we consider a class of restricted
environments which we denote Eres . These restrictions typically disallow the environment to carry out certain
actions, e.g., we forbid Z to instruct one party to start a protocol without instructing the other party to start
the protocol as well.13 We emphasize that these restrictions can easily be eliminated by integrating additional
checks into the protocols and functionalities. The restrictions defining Eres are informally introduced in Sec. 4
and their complete list can be found in Appx. B. We are now ready to state our main security definition.

Definition 1. Let E be some set of restricted environments. We say that a protocol π working in a G-hybrid
model emulates an ideal functionality F with respect to a global ledger L̂(∆) against environments from
class E if for every adversary Adv there exists a simulator Sim such that for every environment Z ∈ E we
have {

exec
L̂(∆),G
π,Adv,Z(λ, z)

}
λ∈N,

z∈{0,1}∗

c
≈
{
ideal

L̂(∆)
F,Sim,Z(λ, z)

}
λ∈N,

z∈{0,1}∗

(where “≈c” denotes computational indistinguishability of distribution ensembles, see, e.g., [12]).

Informally, the above definition says that any attack that can be carried out against the real-world protocol
π can also be carried out against the ideal functionality F . Since the ideal functionality is secure by design
(see Sec. 4.2 and Appx. C), also the protocol offers the same level of security. In Sec. 5 we will discuss in
more detail the roles of F and G.

13 For readers familiar with UC, we notice that general UC composition of course requires arbitrary environments.
In Appx. F we prove that for our particular set of restrictions composition of our sub-protocols is preserved. An
alternative approach would be to use a wrapper. However, due to the complexity of our protocol the description,
of the wrapper would be highly convoluted.
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Simplifying assumptions To simplify exposition, we omit the session identifiers sid and the sub-session
identifiers ssid. Instead, we will use expressions like “message m is a reply to message m′”. We believe that
this approach improves readability. Another simplifying assumption we make is that before the protocol
starts the following public-key infrastructure is setup by some trusted party: (1) For every i = 1, . . . , n let
(pkPi , skPi)←$KGen(1λ), (2) For every i = 1, . . . , n send the message (skPi , (pkP1

, . . . , pkPn)) to Pi. We
emphasize that the use of a PKI is only an abstraction, and can easily be realized using the blockchain.

4 State channels ideal functionality

In this section, we describe the ideal functionality that defines how ledger state channels and virtual state
channels are created, maintained and closed. Before we do so, let us establish several conventions which
simplify the description of the ideal functionality.

4.1 Abbreviated notation

When it is clear from the context which state channel γ we are talking about, we will denote the parties
of γ as A := γ.Alice, B := γ.Bob and I := γ.Ingrid. We also introduce symbolic notation for sending and
receiving messages. Instead of the instruction “Send the message msg to party P in round τ”, we write msg
τ
↪−→ P. Instead of the instruction “Send the message msg to all parties in the set γ.end–users in round τ”,

we write msg
τ
↪−→ γ.end–users. By msg

τ←−↩ P we mean that an entity ( i.e. the ideal functionality) receives a

message msg from party P in round τ , and we use msg
τ≤τ1←−−−↩ P when an entity receives msg from party

P latest in round τ1. In the description of the ideal functionality we use two “timing functions”: TimeExe
Req(i) that represents the maximal number of rounds it takes to inform a party that execution of a contract
instance in a state channel of length i > 0 was requested by the other party, and TimeExe(i) that represents
the maximal number of rounds it takes to execute of a contract instance in a state channel of length i > 0.
Both of these functions are of the order O (∆ · i) (see Sec. 7.3 for formal definition of these function and
their relationship).

Each entity stores and maintains a set of all state channels it is aware of. Following [11] this set will be
called channel space and denoted Γ . Sometimes we will abuse notation and interpret the channel space as a
function which on input id ∈ {0, 1}∗ returns a state channel with identifier id if such state channel exist and
otherwise ⊥. Every time a new contract instance in some of the state channels stored in Γ is successfully
created (or an existing one is executed), the channels space Γ must be updated accordingly. To this end we
define an auxiliary procedure UpdateChanSpace. The procedure takes as input a channel space Γ , a channel
identifier id , a contract instance identifier cid , a new contract instance ν and two values addA and addB
representing the required change in the cash values of the state channel with identifier id. The procedure sets
Γ (id).cspace(cid) := ν, adds addA coins to Γ (id).cash(A) and adds addB coins to Γ (id).cash(B). Finally, it
outputs the updated channel space Γ . In Fig. 5 we define the procedure formally.

UpdateChanSpace(Γ, id , cid , σ̃, C, addA, addB)

Let γ := Γ (id) and σ := γ.cspace(cid).storage. Make the following updates:
1. Add addA coins to γ.cash(γ.Alice)
2. Add addB coins to γ.cash(γ.Bob)
3. Set γ.cspace(cid) equal to the tuple (σ̃, C).

Output Γ with the updated contract instance cid in the state channel γ.

Fig. 5: Auxiliary procedure for updating the channel space.
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4.2 The ideal functionality

We denote the state channel ideal functionality by F L̂(∆)

ch (i, C), where i ∈ N is the maximal length of a state
channel that can be opened via the functionality, and C denotes the set of contract codes whose instances
can be created in the state channels. The ideal functionality F L̂(∆)

ch (i, C) communicates with parties from the

set P, and has access to the global ideal functionality L̂ (the ledger). F L̂(∆)

ch (i, C) maintains a channel space
Γ containing all the open state channels. The set Γ is initially empty.

Since inputs of parties and the messages they send to the ideal functionality do not contain any private
information, we implicitly assume that the ideal functionality forwards all messages it receives to the simulator
Sim. More precisely, upon receiving the message m from party P the ideal functionality sends the message
(P,m) to the simulator. The task of the simulator is to instruct the ideal functionality to make changes on
the ledger and to output messages to the parties in the correct round (both depends on the choice made
by the adversary Adv in the real world). In the description of the ideal functionality, we do not explicitly
mention these instructions of Sim, but instead use the following abbreviation. By saying “wait for at most
∆ rounds to remove/add x coins from P ’s account on the ledger” we mean that the ideal functionality waits
until it is instructed by the simulator, which will happen within at most ∆ rounds, and then request changes
of P ’s account on the ledger. Let us emphasize this abbreviated notation does not affect the reactive nature
of the ideal functionality (meaning that every action of the functionality has to be triggered by some other
entity).

We present the formal definition of the F L̂(∆)

ch (i, C) functionality in Fig. 6 (the constants that appear in
the formal description follow from the technical details of our protocols, see Sec. 6.3 and Sec. 7.2. Here we
provide some intuitions behind this definition, informally introduce the restrictions on the environment (see
Sec. 3.3) whose full list is given in Appx. B, and argue why the ideal functionality satisfies all the security
and efficiency properties stated in Sec. 3.2.

State channel creation The F L̂(∆)

ch (i, C) functionality consists of two “state channel creation” procedures:
one for ledger and one for virtual state channels. The ledger state channel creation procedure starts with a
“create” message from A (without loss of generality we assume that A always initiates the creation process).
The functionality removes the coins that A wants to deposit in the ledger state channel from A’s account on
the ledger, and waits for B to declare that he wants to create the ledger state channel as well. If this happens
within ∆ rounds, then B’s coins are removed from the ledger and the ledger state channel is created which is
communicated to the parties with the “created” message. Otherwise A can get her money back by sending a
“refund” message. Since both parties have to send the message “create”, the consensus on creation security
property is clearly satisfied for ledger state channels.

The creation procedure for a virtual state channel γ works slightly differently since its effects are visible
on the subchannels of γ. The intention to create γ is expressed by P ∈ γ.end–users ∪ {I} by sending a
“create” message to the functionality. Once such a message is received from P , the coins that are needed to
create γ are locked immediately in the corresponding subchannel of γ (if P = I, then coins are locked in
both subchannels of γ). If the functionality receives the “create” messages from all three parties within three
rounds, then the virtual state channel is created, which is communicated to γ.end–users by the “created”
message.14 Thus, the consensus on creation security property is satisfied also for virtual state channels and
since the successful creation takes three rounds, the constant round virtual state channel creation holds as
well.

After the virtual state channel is created, γ.end–users can use it until round γ.validity. When this round
comes, the parties initiate the closing procedure. The functionality then distributes the coins of γ back to
its subchannels according to the balance in γ’s last version. In case there exists cid such that γ.cspace(cid)
is a contract instance with locked coins, then all of these coins go back to I in both subchannels of γ. This

14 Note that the intermediary I is not informed whether the virtual channel has been created. This choice is made to
keep the protocol as simple as possible. Note also that I does not need this information, as she is not allowed to
update this virtual channel.

15



Functionality F L̂(∆)

ch (i, C)

This functionality accepts messages from parties in P. We use the abbreviated notation defined in Sec. 4.1.

Ledger state channel creation

Upon (create, γ)
τ0←−↩ A where γ is a ledger state channel:

1. Within ∆ rounds remove γ.cash(A) coins from A’s account on L̂.

2. If (create, γ)
τ1≤τ0+∆←−−−−−−↩ B, remove within 2∆ rounds γ.cash(B) coins from B’s account on L̂ and then set Γ (γ.id) := γ,

send (created, γ) ↪−→ γ.end–users and stop.

3. Otherwise upon (refund, γ)
>τ0+2∆
←−−−−−↩ A, within ∆ rounds add γ.cash(A) coins to A’s account on L̂.

Virtual state channel creation

1. Upon (create, γ)←−↩ P , where P ∈ γ.end–users ∪ {I}, record the message and proceed as follows:
– If P ∈ γ.end–users proceed as follows: If you have not yet received (create, γ) from I, then remove γ.cash(P ) coins

from P ’s balance in γ.subchan(P ) and γ.cash(γ.other-party(P )) coins from I’s balance in γ.subchan(P ).
– If P = I, then for both P ∈ γ.end–users proceed as follows: If you have not yet received (create, γ) from P then

remove γ.cash(P ) coins from P ’s balance in γ.subchan(P ), and γ.cash(γ.other-party(P )) coins from I’s balance in
γ.subchan(P ).

2. If within 3 rounds you record (create, γ) from all users in γ.end–users∪{γ.Ingrid}, then define Γ (γ.id) := γ, send (created, γ)
↪−→ γ.end–users and wait for channel closing in Step 4 (in the meanwhile accepting the update and execute messages
concerning γ).

3. Otherwise wait until round γ.validity. Then within 2 ·(TimeExeReq(dj/2e)+TimeExe(dj/2e)) rounds, where j := γ.length,
refund the coins that you removed from the subchannels in Step 1.

Automatic closure of virtual state channel γ when round γ.validity comes:

4. Let j := γ.length. Within 2 · (TimeExeReq(dj/2e) + TimeExe(dj/2e)) rounds proceed as follows. Let γ̂ be the current
version of the virtual state channel, i.e. γ̂ := Γ (γ.id), and let ĉA := γ̂.cash(A) and ĉB := γ̂.cash(B).

5. Add ĉA coins to A’s balance and ĉB coins to I’s balance in γ.subchan(A). Add ĉA coins to I’s balance and ĉB coins to B’s
balance in γ.subchan(B). If there exists cid ∈ {0, 1}∗ such that σcid := γ̂.cspace(cid).storage 6= ⊥ and ĉ := σcid .locked > 0,
then add ĉ coins to I’s balance in both γ.subchan(A) and γ.subchan(B). Erase γ̂ from Γ and (closed, γ.id) ↪−→ γ.end–users.

Contract instance update

Upon (update, id , cid , σ̃, C)
τ0←−↩ P , let γ := Γ (id), j = γ.length. If P 6∈ γ.end–users then stop. Else proceed as follows:

1. Send (update–requested, id, cid , σ̃, C)
τ0+1
↪−−−→ γ.other–party(P ) and set T := τ0 + 1 in optimistic case when both parties in

γ.end–users are honest. Else if j = 1, set T := τ0 + 3∆+ 1 and if j > 1, set T := τ0 + 4 · TimeExeReq(dj/2e) + 1.

2. If (update–reply, ok , id , cid)
τ1≤T←−−−↩ γ.other–party(P ), then set Γ := UpdateChanSpace(Γ, id , cid , σ̃, C, addA, addB), where

addA := −σ̃.cash(A) if γ.cspace(cid) = ⊥ and addA := σ.cash(A) − σ̃.cash(A) otherwise for σ := γ.cspace(cid).storage.

The value addB is defined analogously. Then send (updated, id , cid)
τ1+1
↪−−−→ γ.end–users and stop.

Contract instance execution

Upon (execute, id , cid , f, z)
τ0←−↩ P , let γ := Γ (id) and j = γ.length. If P 6∈ γ.end–users then stop. Else set T1 and T2 as:

– In the optimistic case when both parties in γ.end–users are honest, set T1 := τ0 + 4 and T2 := τ0 + 5.
– In the pessimistic case when at least one party in γ.end–users is corrupt, set T1, T2 := τ0 + 4∆ + 5 if j = 1 and set
T1 := τ0 + 2 · TimeExeReq(dj/2e) + 5, T2 := τ0 + 4 · TimeExeReq(dj/2e) + 5 if j > 1.

1. In round τ1 ≤ T1, send (execute–requested, id , cid , f, z)
τ1
↪−→ γ.other–party(P ).

2. In round τ2 ≤ T2, let γ := Γ (id), ν := γ.cspace(cid), σ := ν.storage, and τ := τ0 if P is honest and else τ is set by the
simulator. Compute (σ̃, addL, addR,m) := f(σ, P, τ, z). If m = ⊥, then stop. Else set Γ := UpdateChanSpace(Γ, id , cid , σ̃,

ν.code, addL, addR) and send (executed, id , cid , σ̃, addL, addR,m)
τ3
↪−→ γ.end–users.

Ledger state channel closure

Upon (close, id)
τ0←−↩ P , let γ = Γ (id). If P 6∈ γ.end–users then stop. Else wait at most 7∆ rounds and distinguish the following

two cases:
1. If there exists cid ∈ {0, 1}∗ such that σcid := γ.cspace(cid).storage 6= ⊥ and σcid .locked 6= 0, then stop.
2. Otherwise wait up to ∆ rounds to add γ.cash(A) coins to A’s account and γ.cash(B) coins to B’s account on the ledger

L. Then set Γ (id) := ⊥, send (closed, id)
τ2≤τ0+8∆
↪−−−−−−−→ γ.end–users and stop.

Fig. 6: The state channel ideal functionality.
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is to guarantee that I never loses coins even if end-users of γ do not terminate their contract instance in γ
before γ.validity. See Appx. C for a formal proof of the balance security property.

In both cases (“ledger” and “virtual”) we assume that all the honest parties involved in channel creation
initiate the procedure in the same round and that they have enough funds for the new state channel. In case
of a virtual state channel, we additionally assume that the length of its two subchannels differ at most by
one.15

Contract instance update The procedure for updating a contract instance is identical for ledger and virtual
state channels (this procedure is also used for creating new contract instances). It is initiated by a party
P ∈ γ.end–users that sends an “update” message to the ideal functionality. This message has parameters id
and cid that identify a state channel γ and a contract instance in this state channel (respectively). The other
parameters, σ̃ and C, denote the new storage and code of the contract instance. The party Q := γ.other–
party(P ) is asked to confirm the update via an “update-requested” message. If Q replies with an “update-
reply” message within 1 round if both parties are honest and within T rounds otherwise (where T is a
function of state channel length, see Step 2), the contract instance with identifier cid in γ gets replaced with
a contract instance determined by the tuple (σ̃, C). In the next round, both parties in γ.end–users get notified
via an “updated” message. Note that Q always has to confirm the update which implies the consensus on
update security property. The constant round optimistic update efficiency property holds as well since the
update takes exactly 2 rounds if both parties are honest.

We assume that the environment never asks the parties to do obviously illegal things, like updating a
contract instance in a state channel that does not exits, or creating a contract instance when there are not
enough coins in the subchannels. Moreover, we assume that the environment never asks to update a contract
instance when it is already being updated or executed.16

Contract instance execution The procedure for executing a contract instance is initiated by one of the parties
P ∈ γ.end–users that sends an “execute” message to the ideal functionality in round τ0. This message has
parameters id and cid whose meaning is as in the update procedure. Other parameters are: f denoting
the contract function to be executed, and z which is an additional input parameter to the function f . The
execution results in updating the contract instance with identifier cid according to the result of computing
f(σ, P, τ, z), where σ is the current storage of the contract instance and τ := τ0 in case P is honest and
determined by the simulator otherwise. The other party of the state channel is notified about the execution
request before round τ0 + 5 in the optimistic case and before round τ0 +T1 otherwise. Both parties from the
set γ.end–users learn the result of the execution before round τ0 + 5 in the optimistic case (which implies the
constant round optimistic execute) and before round τ0 +T2 otherwise. The values T1 and T2 are functions of
state channel length, see the formal description in Fig. 6. Observe that contract instance execution initiated
by party P does not require approval of the other party of the channel (although the other party is informed
about the execution request). This implies that the guarantee of execution security property is satisfied.

We would like to emphasize that if two different execute messages are received by the ideal functionality
at the same time (or not too many rounds from each other), then it is up to the adversary to decide which
function is executed first.17 Designers of contract codes and users of the protocols should be aware of this
possible asynchronicity.

Ledger state channel closure The procedure for closing a ledger state channel γ starts when a party P ∈ γ.end–
users sends to the ideal functionality a message (close, id), where id is the identifier of ledger state channel
γ to be closed. The functionality checks (in Step 1) if there are no contract instances that are open over
γ. If not, then in Step 2 the functionality distributes the coins from γ to the ledger accounts of the parties

15 As discussed in Sec. 2, we make this assumption to achieve pessimistic time complexity which is linear in the state
channel length.

16 Although we forbid parallel updates of the same contract instance, we do not make any restrictions about parallel
updates of two different contract instances even if they are in the same ledger state channel. This in particular
means that we allow concurrent creation of virtual state channels.

17 Note that this is the case also for execution of smart contracts on the blockchain.
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according to γ’s latest balance, and notifies the parties about a successful closure. The restrictions on the
environment in case of the contract instance execution and ledger state channel closure are straightforward
(see Appx. B).

4.3 Using the state channel ideal functionality

Let us now demonstrate how to use our ideal functionality for generalized state channel networks in practice.
We do it on a concrete example of the two party lottery (already discussed in Sec. 2). The first step is to
define a contract code Clot(i) which allows two parties to play the lottery in a state channel of length at
most i. A contract storage σ of Clot(i) has, in addition to the mandatory attributes σ.userL, σ.userR, σ.cash
and σ.locked (see Sec. 4.1), the attribute σ.start ∈ N, whose purpose it to store the construction round,
the attribute σ.com ∈ {0, 1}∗, to store the commit value when submitted by σ.userL, and the attribute
σ.bit ∈ {0, 1} to store the secret bit when provided by σ.userR.

The contract code has one constructor Initlot which generates the initial contract storage σ such that
both σ.cash(σ.userL) and σ.cash(σ.userR) are equal to 1 (each user deposits 1 coin). The contract functions
are: (i) Com which, if executed by σ.userL on input c, stores c in σ.com, (ii) Reveal which, if executed by
σ.userR on input rB , stores rB in σ.bit, (iii) Open which allows σ.userL to open the commitment stored in
σ.com and pays out 2 coins to the winner, and (iv) Punish which allows a party to unlock coins from the
contract instance in case the other party misbehaves. See Appx. D for a formal definition of Clot(i).

Assume now that parties Alice and Bob have a virtual state channel γ created via the ideal functionality
F L̂(∆)

ch (i, C), where Clot(i) ∈ C. If Alice wants to play the lottery using γ, she first locally executes the construc-
tor Initlot to obtain the initial contract storage σ. Then she sends the message (update, γ.id, cid , σ, Clot(i))

to F L̂(∆)

ch (i, C) for some contact instance identifier cid never used before. The ideal functionality informs Bob
about Alice’s intention to play by sending the message (update–requested, γ.id, cid , σ, Clot(i)) to him. If Bob
agrees with playing the game, he sends the reply (update–reply, ok , γ.id, cid). Alice and Bob can now start
playing in a way we describe below (let τ0 be the current round).

1. Commit: In round τ0 Alice locally chooses a random bit rA ∈ {0, 1} and a random string s ∈ {0, 1}λ,
where λ is the security parameter, locally computes the commit value c using the randomness s. Then
she submits c by sending the message (execute, γ.id, cid , Com, c) to the ideal functionality.

2. Reveal: If before round τ0 + TimeExe(i) Bob receives a message from the ideal functionality that Alice
committed to her secret bit, Bob locally chooses a random bit rB ∈ {0, 1} which he submits by sending
the message (execute, γ.id, cid , Reveal, rB) to the ideal functionality. Otherwise, in round τ0 + Time
Exe(i), he sends the message (execute, γ.id, cid , Punish,⊥) to the ideal functionality to unlock all coins
from the lottery contract by which he punishes Alice for her misbehavior.

3. Open: If before round τ0 + 2 · TimeExe(i) Alice receives a message from the ideal functionality that
Bob reveled his secret bit rB , she opens her commitment by sending (execute, γ.id, cid , Open, (rA, s)).
Otherwise, in round τ0 + 2 · TimeExe(i), she sends the message (execute, γ.id, cid , Punish,⊥) to unlock
all coins from the lottery contract by which she punishes Bob for his misbehavior.

4. Finalize: If until round τ0 + 3 · TimeExe(i) Bob did not receive a message from the ideal functionality
that Alice opened her commitment, Bob sends the message (execute, γ.id, cid , Punish,⊥) to the ideal
functionality to unlock all coins from the lottery contract and finalize the game.

5 An overview of our approach

In this section we provide a high level idea of the modular design of our protocol realizing the state channel
ideal functionality F L̂(∆)

ch (i, C) (the main ideas behind our construction were already presented in Sec. 2).

Ledger state channels Our first step is to define an ideal functionality F L̂(∆)
scc (C) which models the behavior

of a concrete smart contract, which we call state channel contract. This contract allows two parties to open,
maintain and close a ledger state channel on the blockchain. The ideal functionality is parametrized by the
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set of contract codes C whose instances can be opened in the ledger state channels created via this ideal
functionality. The ideal functionality F L̂(∆)

scc (C) together with the ledger functionality L̂ can be implemented by
a cryptocurrency which supports such state channel contracts on its blockchain (a candidate cryptocurrency
would be, e.g., Ethereum). We use this contract ideal functionality to design a protocol Π(1, C) which realizes

the ideal functionality F L̂(∆)

ch (1, C) (i.e. the protocol for ledger state channels). We describe the protocol as
well as the ideal functionality F L̂(∆)

scc (C) in Sec. 6.3. Furthermore, in Appx. E we prove that the protocol

Π(1, C) indeed emulates the ideal functionality F L̂(∆)

ch (1, C) in the F L̂(∆)
scc (C) hybrid world. This statement is

formalized by the following theorem.

Theorem 1. Suppose the underlying signature scheme is existentially unforgeable against chosen message
attacks. The protocol Π(1, C) working in F L̂(∆)

scc (C)-hybrid model emulates the ideal functionality F L̂(∆)

ch (1, C)
against environments from class Eres for every set of contract codes C and every ∆ ∈ N.

Virtual state channels As already mentioned in Sec. 2, our technique allows to create virtual state channels
of arbitrary length, via using the state channel functionality recursively. By this we mean that a protocol
for constructing state channels of length up to i will work in a model with access to an ideal functionality
for constructing state channels of length up to i− 1. More formally, for every i > 1 we construct (in Sec. 7)

a protocol Π(i, C) realizing the ideal functionality F L̂(∆)

ch (i, C) in the F L̂(∆)

ch (i − 1, C′)-hybrid world. Here C′
is a set of contract codes defined as C′ := C ∪ VSCCi(C), where VSCCi(C) is a contract code (also presented
in Sec. 7), which we call the virtual state channel contract, that allows to create a virtual state channel of
length i in which contract instance with code from the set C can be opened. Thus importantly, the hybrid
ideal functionality F L̂(∆)

ch (i− 1, C′) allows to create state channels that can serve as subchannels of a virtual
channel of length i.

Very briefly, the hybrid ideal functionality is used by parties of the protocol Π(i, C) as follows. If a party
receives a message regarding a state channel of length j < i, then it simply forwards this message to the hybrid
ideal functionality F L̂(∆)

ch (i − 1, C′). The more interesting case is when a party receives a message regarding

a virtual state channel γ of length exactly i. Then it uses the hybrid ideal functionality F L̂(∆)

ch (i − 1, C′) to
make changes in the subchannels of the virtual state channels γ. In Appx. F we prove the following theorem.

Theorem 2. Suppose the underlying signature scheme is existentially unforgeable against chosen message

attacks. The protocol Π(i, C) working in F L̂(∆)
ch (i − 1, VSCCi(C) ∪ C)-hybrid model emulates the ideal func-

tionality F L̂(∆)
ch (i, C) against environments from class Eres for every set of contract codes C, every i > 1 and

every ∆ ∈ N.

By applying the composition recursively, we get a construction of a protocol realizing F L̂(∆)

ch (i, C) in the

F L̂(∆)
scc (Ĉ)-hybrid model, where Ĉ is a result of applying the “C := C ∪ VSCCi(C)” equation i times recursively.

See Fig. 7 for an example for i = 3.

Fch(3, C) ∼ Π(3, C)

Fch(2, C′) ∼ Π(2, C′)

Fch(1, C′′) ∼ Π(1, C′′)

Fscc(C′′)

Fig. 7: Our modular approach. Above Fch := F L̂(∆)
ch , Fscc := F L̂(∆)

scc , C′ := C ∪ VSCC3(C) and C′′ := C′ ∪ VSCC2(C′).
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6 Ledger State Channels

In this section, we define an ideal functionality F L̂(∆)
scc (C) which represents the smart contract allowing two

parties to open, maintain and close a ledger state channel. We call such a smart contract a state channel
contract. Then we describe the protocol Π(1, C) that realizes the state channels ideal functionality F L̂(∆)

ch (1, C)
(see Sec. 4) in the hybrid world F L̂(∆)

scc (C) for any set of contract codes C. But before we do so, we introduce
several additional terms, auxiliary procedures and notation which will be used the protocol descriptions.

6.1 Maintaining a local channel space

In order to update the contract instances off-chain, the users of the state channel γ will store some additional
information in their local copies of γ. To this end, we introduce the following terminology. A contract
instance version is an attribute tuple ν that in addition to the attributes of contract instance (which are
ν.code, ν.storage) has an attribute ν.version ∈ N. As the name suggests, the purpose of ν.version is to indicate
the version of the contract instance. When a contract instance is created, each user locally sets the version
number of the contract instance to 0. Each time users want to update the contract instance off-chain, they
increase the value of the version attribute by one. A signed contract instance version additionally contains an
attribute ν.sign : {ν.userL, ν.userR} → {0, 1}∗, where ν.sign(ν.userL) is a signature of ν.userL on the contract
instance version and ν.sign(ν.userR) is a signature of ν.userR on the contract instance version. An attribute
tuple γ is state channel’s extended version if it is defined as the normal state channel, except that every
γ.cspace(cid) is a signed contact instance version. To shorten the description of our protocols, we define an
auxiliary function which on input a signed contract instance version checks both signatures and outputs 1 if
both of them are valid and outputs 0 otherwise.

VerifyInstance(id , cid , ν)

Let σn := ν.storage, L := σn.userL, R := σn.userR, C := ν.code, w := ν.version, sL := ν.sign(L), sR := ν.sign(R).
If VfypkR(id , cid , σn, C, w; sR) 6= 1 or VfypkL(id , cid , σn, C, w; sL) 6= 1, then return 0. Else return 1.

Fig. 8: Auxiliary function for validation of a signed contract instance version.

Recall from Sec. 4.1 that each entity (ideal functionality or party in a protocol), stores and maintains a
set of all state channels it is aware of. This set is called channel space and denoted Γ . When we want to
emphasize that we are referring to a local version of a state channel stored by some entity T , we add T to the
superscript. So for instance, γT := ΓT (id) denotes T ’s local version of the state channel γ with identifier id
as stored in T ’s channel space ΓT . In Sec. 4.1, we described an auxiliary UpdateChanSpace whose purpose
is to update a channels space stored by some entity T . See Fig. 5 on page 14 for the formal definition of
the procedure. In our protocols, it will be often the case that the values of the input parameters addL and
addR will correspond to the difference between the amount of coins locked in the contract instance before the
update and the amount of coins in the new contract instance (recall that this was the case in the update part

of the ideal functionality F L̂(∆)

ch (i, C)). To simplify the protocol description even further and avoid repetition
of protocol code, we define another auxiliary procedure UpdateChanSpace∗ which will derive the values addL
and addR automatically from the new contract storage σ̃. See the formal description in Fig. 9.

We define both UpdateChanSpace∗ and UpdateChanSpace in case a party wants to update the private
extended version of the contract instance. Notice that in this case procedures will take additional two
parameters: the new version number and the signatures created by the parties.

In addition to the channel space, each party P maintains a set ΓPaux containing additional information
about the contract instances in the open state channels of the party. The tuple aux := ΓPaux (id , cid) has the
following attributes: aux .next-version ∈ N denoting the version number to be used during the next update
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UpdateChanSpace∗(Γ, id , cid , σ̃, C)

Let γ := Γ (id) and σ := γ.cspace(cid).storage. If σ = ⊥, the set (xA, xB) := (0, 0). Else set (xA, xB) :=
(σ.cash(γ.Alice), σ.cash(γ.Bob)). Make the following updates:
1. Add xA − σ̃.cash(γ.Alice) coins to γ.cash(γ.Alice)
2. Add xB − σ̃.cash(γ.Bob) coins to γ.cash(γ.Bob)
3. Set γ.cspace(cid) equal to the tuple (σ̃, C).

Output Γ with the updated contract instance cid in the state channel γ.

Fig. 9: Modification of the auxiliary procedure for updating the channel space.

of the contract instance (id , cid);18; aux .corrupt ∈ {0, 1} which is set to 1 the first time parties run into
disagreement about the contract instance (id , cid); aux .registered ∈ {0, 1} which is set to 1 the if the contract
instance (id , cid) is registered (on the blockchain in case of ledger state channel and in the subchannels in
case of virtual state channel); and if ΓP (id) is a virtual state channel, then aux has an addition attribute
aux .toExecute which is a set containing all functions that party P requested to “forcefully” execute via the
subchannels in case of a virtual state channel.

For better readability of the protocol descriptions, we write “Mark (id , cid) as corrupt” instead of the
instruction “Set Γaux (id , cid).corrupt := 1”. Similarly, we write “Mark (id , cid) as registered” instead of the
instruction “Set Γaux (id , cid).registered := 1”.

6.2 Ideal functionality for the State Channel Contract

The ideal functionality F L̂(∆)
scc (C) is parametrized by a set C defining the contract codes whose instance

can be constructed in a ledger state channel. The ideal functionality F L̂(∆)
scc (C) has access to the global

ideal functionality L̂ (the ledger). The ideal functionality F L̂(∆)
scc (C) accepts messages from parties P :=

{P1, . . . , Pn}. Let us emphasize that since the ideal functionality models a concrete smart contracts on the
ledger, each communication session (party sends a message to the ideal functionality which potentially makes
some modifications on the ledger and replies) comes with a delay up to ∆ rounds. The exact timing (and
if applicable, the exact round when transaction on the ledger takes place), is determined by the adversary.
In order to shorten the description of the ideal functionality, we do not mention the transact instructions
explicitly.

The functionality F L̂(∆)
scc (C) maintains a space Γ containing all open ledger state channels. The set Γ is

initially empty. The functionality consists of four parts: “Create a ledger state channel”, “Contract instance
registration”, “Contract instance execution” and “Close a ledger state channel”. These parts will be described
and formally defined together with the protocol for ledger state channels in Sec. 6.3.

6.3 Protocol for Ledger State Channels

Create a ledger state channel. In order to create a new ledger state channel γ, the environment sends the
message (create, γ) to both parties in γ.end–users. The protocol for creating a ledger state channel works at
a high level as follows.

The initiating party γ.Alice requests construction of the state channel contract by sending the message
(construct, γ) to the ideal functionality F L̂(∆)

scc (C). The ideal functionality locks the required amount of coins
in her account on the ledger and sends the message (initializing, γ) to both parties. If party γ.Bob confirms
the initialization by sending the message (confirm, γ), the ideal functionality F L̂(∆)

scc (C) outputs (created, γ).
In case γ.Bob does not confirm, the ledger state channel cannot be created and the initiating party γ.Alice
has the option to refund the coins that were locked in her account on the ledger during the first step.

18 For technical reasons (see Appx. 6.3) it is not always the case that Γ (id).cspace(cid).version+1 = Γaux (id , cid).next-
version.
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Creation of a ledger state channels takes up to 2∆ rounds since it requires two interactions with the hybrid
ideal functionality modeling a smart contract on the ledger. In case the ledger state channel is not created
but γ.Alice’s coins were locked in the first phase of the ledger state channel creation, she can receive them
back latest after 3∆ rounds. Formal description of the protocol for ledger state channel creation and the
corresponding part of the Fscc functionality can be found below.

Protocol Π(1, C): Create a ledger state channel

We use the abbreviated notation from Sec. 4.1 and Sec. 6.1. In addition, let Fscc := F L̂(∆)
scc (C).

Party A upon (create, γ)
τ0←−↩ Z

1. Send (construct, γ)
τ0
↪−→ Fscc and wait.

Party B upon (create, γ)
τ0←−↩ Z

2. If (initializing, γ)
τ1≤τ0+∆←−−−−−−↩ Fscc , then (confirm, γ)

τ1
↪−→ Fscc and wait. Else stop.

3. If (initialized, γ)
τ2≤τ0+2·∆
←−−−−−−−↩ Fscc , then set ΓB(γ.id) := γ, output (created, γ)

τ2
↪−→ Z and stop. Else

stop.

Back to party A

4. If (initialized, γ)
τ2≤τ0+2·∆
←−−−−−−−↩ Fscc , then set ΓA(γ.id) := γ, output (created, γ)

τ2
↪−→ Z and stop. Else

go to next step.

5. If (refund, γ)
τ3>τ0+2·∆←−−−−−−−↩ Z, then (refund, γ)

τ3
↪−→ Fscc and stop.

Functionality F L̂(∆)
scc (C): Create a ledger state channel

We use the abbreviated notation from Sec. 4.1.

Upon (construct, γ)
τ0←−↩ P :

1. If P 6= A, there already exists a state channel γ′ such that γ.id = γ′.id, γ.cspace(cid) 6= ⊥ for
some cid ∈ {0, 1}∗ or γ.cash(A) < 0 or γ.cash(B) < 0, then stop.

2. Within ∆ rounds remove γ.cash(A) coins from A’s account on the ledger L̂. If it is impossible
due to insufficient funds, then stop. Else (initializing, γ) ↪−→ B and store the pair tamp := (τ0, γ).

Upon (confirm, γ)
τ1←−↩ P :

3. If there is no pair tamp = (τ0, γ) in the storage, (τ1 − τ0) > ∆ or P 6= B, then stop.

4. Within ∆ rounds remove γ.cash(B) coins from B’s account on the ledger L̂. If it is impossible
due to insufficient funds, then stop. Else set Γ (γ.id) := γ and delete tamp from the memory.
Thereafter send (initialized, γ) ↪−→ γ.end–users.

Upon (refund, γ)
τ2←−↩ P :

5. If there is no pair tamp = (τ0, γ) in the storage, (τ2 − τ0) ≤ 2∆ or P 6= A, then stop.

6. Else within ∆ rounds add γ.cash(A) coins to A’s account in L̂ and delete tamp from the storage.

Register a contract instance in a ledger state channel. As long as both end-users of a ledger state channel
behave honestly, they can update, execute and close contract instances running in the ledger state channel
off-chain; i.e. without communicating with the ideal functionality F L̂(∆)

scc (C). However, once the parties run
into dispute (e.g., one party does not communicate, sends an invalid message, etc.), parties have to resolve
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their disagreement on the ledger. We call this process “registration of a contract instance”, and will describe
its basic functionality below.

The registration of a contract instance might be necessary either when the contract instance is being
updated, executed or when a ledger state channel is being closed. To prevent repeating the same part of the
protocol multiple times in each of the protocols, we state the registration process as a separate procedure
Register(P, id , cid) which can be called by parties running one of the sub-protocols mentioned above. The
procedure takes as input party P which initiates the registration and the identifiers defining the contract
instance to be registered, i.e. identifier of the ledger state channel id and the contract instance identifier cid .

At a high level, the initiating party (assume for now that it is γ.Alice) sends her contract instance version
to the ideal functionality F L̂(∆)

scc (C) which first checks the validity of the received version, and then within
∆ rounds the hybrid ideal functionality F L̂(∆)

scc (C) informs both users that the contract instance is being
registered. Party γ.Bob then reacts by sending his own version of the contract instance to F L̂(∆)

scc (C). The
ideal functionality compares the two received versions, registers the one with higher version number and
within ∆ rounds informs both users which version was registered. In case γ.Bob did not send in his version,
γ.Alice can finalize the registration by sending the message “finalize–register” to the ideal functionality.

In the optimistic case when γ.Bob submits a valid version of the contract instance, the registration
procedure takes up to 2∆ rounds since it requires two interactions with the ideal functionality F L̂(∆)

scc (C). In
the pessimistic case when γ.Bob does not react or submits an invalid version, the procedure takes up to 3∆.
Formal description of this procedure and the corresponding part of the F L̂(∆)

scc (C) functionality follow.

Procedure Register(P, id , cid)

We use the abbreviated notation from Sec. 4.1 and Sec. 6.1. In addition, we denote Fscc := F L̂(∆)
scc (C).

Party P :

1. Let γP := ΓP (id), νP := γP .cspace(cid), and let τ0 be the current round. Send (instance–register,

id , cid , νP )
τ0
↪−→ Fscc .

Party Q upon (instance–registering, id , cid)
τ1←−↩ Fscc

2. Let γQ := ΓQ(id) and νQ := γQ.cspace(cid). Then send (instance–register, id, cid , νQ)
τ1
↪−→ Fscc and

goto step 4.

Back to party P :

3. If not (instance–registered, id , cid , ν̃)
τ2≤τ0+2∆
←−−−−−−−↩ Fscc , then send (finalize–register, id, cid)

τ3=τ1+∆
↪−−−−−−→

Fscc .

End for both T = A and T = B

4. Upon (instance–registered, id , cid , ν̃) ←−↩ Fscc , mark (id , cid) as registered and set ΓT := Update

ChanSpace∗(ΓT , id , cid , ν̃).

Functionality F L̂(∆)
scc (C): Contract instance registration

We use the abbreviated notation from Sec. 4.1 and Sec. 6.1.

Upon (instance–register, id , cid , ν)
τ0←−↩ P , let γ := Γ (id) and do:

1. If P ∈ γ.end–users and ν = ⊥, then goto step 3.
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2. If party P 6∈ γ.end–users, VerifyInstance(id , cid , ν) 6= 1, ν.code 6∈ C, γ.cspace(cid) 6= ⊥ or
ν.storage /∈ ν.code.Λ, then stop.

3. Let Q := γ.other–party(P ) and consider the following four cases:
– If your memory contains a tuple (P, id , cid , ν̂, τ̂0), then stop.
– If your memory contains a tuple (Q, id , cid , ν̂, τ̂0) and ν = ⊥, then stop.
– If your memory contains a tuple (Q, id , cid , ν̂, τ̂0) and ν 6= ⊥, then first compare the version

number, i.e. if ν̂ = ⊥ or ν.storage.version > ν̂.storage.version, then set ν̃ := (ν.storage, ν.code)
and otherwise set ν̃ := (ν̂.storage, ν̂.code). Thereafter wait for at most ∆ rounds to send

(instance–registered, id , cid , ν̃)
τ1≤τ0+∆
↪−−−−−−→ γ.end–users, update Γ := UpdateChanSpace∗(Γ,

id , cid , ν̃) and erase (Q, id , cid , ν̂, τ̂0) from your memory.

– Else save (P, id , cid , ν, τ0) to your memory and send (instance–registering, id , cid)
τ1≤τ0+∆
↪−−−−−−→

γ.end–users.

Upon (finalize–register, id , cid)
τ2←−↩ P , let γ := Γ (id) and do

– If P ∈ γ.end–users and your memory contains a value (P, id , cid , ν̂, τ̂0) such that τ2 − τ̂0 ≥ 2∆,

then set ν̃ := (ν̂.storage, ν̂.code), send (instance–registered, id , cid , ν̃)
τ3≤τ2+∆
↪−−−−−−→ γ.end–users, set

Γ := UpdateChanSpace∗(Γ, id , cid , ν̃) and erase (P, id , cid , ν̂, τ̂0) from your memory.
– Else ignore this call.

Update a contract instance in a ledger state channel. An update of the storage of a contract instance in a
ledger state channel starts when the environment sends the message (update, id , cid , σ̃, C) to the initiating
party P ∈ γ.end–users and works as follows. The initiating party P signs the new contract instance with
increased version number (i.e. if ν is the contract instance version stored by P until now, then the new
contract instance version ν′ will be such that ν′.version = ν.version + 1). Party P then sends her signature
on this value to the party Q := γ.other–party(P ). The other party verifies the signature and informs the
environment that the update was requested. If the environment confirms the update, the party Q signs the
updated contract version and sends the signature to P . In this optimistic case, the update takes 2 rounds.

Let us discuss how parties behave in case the environment does not confirm the update. If Q simply aborts
in this situation, P does not know if the update failed because Q is malicious or because the environment did
not confirm the update. Therefore, Q has to inform P about the failure. This is, however, still not sufficient.
Note that Q holds P ’s signature of the updated contract instance version. If Q is corrupt, he can register the
updated contract instance on the ledger at any later point. Thus, party Q in order to convince P that he is
not malicious, signs the original contract instance ν but with version number increased by 2 (i.e. the contract
instance ν∗ signed by Q is such that ν∗.storage = ν.storage, ν∗.code = ν.code but ν∗.version = ν.version+ 2).
Party Q then sends the signature to party P . Note that since ν∗.storage = ν.storage, party P does not need
to send her signature on ν∗ back to Q.

If P does not receive a valid signature on either the updated contract instance version or the original
contract instance with increased version number from Q, it is clear that Q is malicious and therefore P
initiates the registration of the contract instance on the ledger by calling the procedure Register(P, id , cid).
Note that Q can still register the updated contract instance (the one that was signed by P ). But importantly,
after at most 2 + 3∆ rounds it will be clear to both parties what the current contract instance version is.
Formal description of the protocol for updating a contract instance in a ledger state channel can be found
below.

Execute a contract instance in a ledger state channel. In order to execute a contact instance stored in a
ledger state channel γ, the environment sends the message (execute, γ.id, cid , f, z) to the initiating party
P ∈ γ.end–users. The parameter cid points to the contract instance, f is the contact function and z are
additional input values for f . For P = γ.Alice the protocol works as follows. If the parties never registered
the contract instance with identifier cid , then γ.Alice first tries to execute the contract instance “peacefully”.
This means that she locally executes f on the contract version she stores in Γ γ.Alice, signs the new contract
instance and sends the signature to γ.Bob. Party γ.Bob also executes f locally on his own version of the
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contract instance stored in Γ γ.Bob and thereafter verifies γ.Alice’s signature. If the signature is valid, γ.Bob
immediately confirms the execution by sending his signature on the new contract instance to party γ.Alice.

A technical challenge occurs when both parties want to peacefully execute the same contract instance in
the same round τ since it becomes unclear what is the new contract instance. This can be resolved be having
designated rounds for each party.

In case the contract instance with identifier cid has already been registered on the ledger or the peaceful
execution fails, the initiating party executes the contract instance “forcefully”. By this we mean that γ.Alice
first initiates registration of the contract instance by calling the procedure Register(γ.Alice, id , cid) if it
was not done before, and then instructs the hybrid ideal functionality F L̂(∆)

scc (C) to execute the contract
instance. The Register procedure can take up to 3∆ rounds and the contract instance execution on the
ledger can take up to ∆ rounds. Thus, pessimistic time complexity of the execution protocol is equal to
4∆+ 5 rounds. Formal description of the protocol for executing a contract instance in a ledger state channel
and the corresponding part of the functionality F L̂(∆)

scc (C) follow.

Protocol Π(1, C): Contract instance execution

We use the abbreviated notation from Sec. 4.1 and Sec. 6.1. In addition, let Fscc := F L̂(∆)
scc (C).

Party P upon (execute, id , cid , f, z)
τ0←−↩ Z

1. Let γP := ΓP (id), νP := γP .cspace(cid), σP := νP .storage, CP := νP .code and set wP :=
ΓPaux (id , cid).next-version.

2. Set τ1 := τ0 + x, where x is the smallest offset such that τ1 = 1 mod 4 if P = γP .Alice and τ1 = 3
mod 4 if P = γP .Bob.

3. For round τ ∈ [τ0, τ1] proceed as follows: If (id , cid) is marked as corrupt in ΓPaux , goto step step 5.
4. Compute (σ̃, addL, addR,m) := f(σP , P, τ0, z). If m = ⊥, then stop. Otherwise compute sP :=

SignskP (id , cid , σ̃, CP , wP ), send (peaceful–request, id , cid , f, z, sP , τ0)
τ1
↪−→ Q and goto step 12.

5. If (id , cid) is marked as corrupt but not registered, then execute Register(id , cid , νP ).
6. Goto step 13.

Party Q upon (peaceful–request, id , cid , f, z, sP , τ0)
τQ←−↩ P

7. Let γQ := ΓQ(id), νQ := γQ.cspace(cid), σQ := νQ.storage, CQ := νQ.code, wQ := ΓQaux (id , cid).next-
version. If γQ = ⊥, P,Q 6∈ γQ.end–users, νQ = ⊥ or f 6∈ CQ, then goto step 11.

8. If P = γQ.Alice and τQ mod 4 6= 2 or if P = γ.Bob and τQ mod 4 6= 0, then goto step 11.
9. If τ0 6∈ [τQ − 4, τQ − 1], then goto step 11.

10. If (id , cid) is not marked as corrupt in ΓQaux , do:
(a) Compute (σ̃, addL, addR,m) := f(σQ, P, τ0, z).
(b) If m = ⊥ or VfypkP (id , cid , σ̃, CQ, wQ; sP ) 6= 1, then goto step 11.

(c) Output (execute–requested, id , cid , f, z, τ0)
τQ
↪−→ Z.

(d) Sign sQ := SignskQ(id , cid , σ̃, CQ, wQ), send (peaceful–confirm, id , cid , f, z, sQ)
τQ
↪−→ P , set ΓQ :=

UpdateChanSpace(ΓQ, id , cid , σ̃, CQ, addA, addR, w
Q, {sP , sQ}), ΓQaux (id , cid).next-version := wQ+

1.

(e) Output (executed, id , cid , σ̃, addL, addR,m)
τQ+1
↪−−−→ Z and stop.

11. Mark (id , cid) as corrupt in ΓQ. Then goto step 15.

Back to party P

12. Distinguish the following two cases
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– If (peaceful–confirm, id , cid , f, z, sQ)
τ2=τ1+2←−−−−−↩ Q such that VfypkQ(id , cid , σ̃, CP , wP ; sQ) = 1,

then set ΓP := UpdateChanSpace(ΓP , id , cid , σ̃, CP , wP , {sP , sQ}), ΓPaux .next-version := wP +1,

output (executed, id , cid , σ̃, addL, addR,m)
τ2
↪−→ Z and stop.

– Else mark (id , cid) as corrupt in ΓPaux and execute the Register(P, id , cid). Once the procedure
is executed (in round τ3 ≤ τ0 + 3∆+ 5) and it holds that ΓP (id).cspace(cid).storage = σ̃ (i.e. Q
registered the contract instance version after execution), then output (executed, id , cid , σ̃, addL,

addR,m)
τ3
↪−→ Z and stop. Else goto the next step.

13. Send (instance–execute, id , cid , f, z)
τ3
↪−→ Fscc .

Back to party Q

14. If (execute–requested, id , cid , f, z, τ)
τ4≤τ0+4∆+5
←−−−−−−−−↩ Fscc , output (execute–requested, id , cid , f, z, τ)

τ4
↪−→ Z.

End for both parties T = A,B

15. If (instance–executed, id , cid , σ̂, addL, addR,m)
τ4≤τ0+4∆+5
←−−−−−−−−↩ Fscc , set ΓT := UpdateChanSpace

(ΓT , id , cid , σ̂, CT , addL, addR), output (executed, id , cid , σ̂, addL, addR,m)
τ4
↪−→ Z and stop. Else

stop.

Functionality F L̂(∆)
scc (C): Contract instance execution

We use the abbreviated notation from Sec. 4.1 and Sec. 6.1.

Upon (instance–execute, id , cid , f, z, τ)
τ0←−↩ P, within ∆ rounds proceed as follows. Let γ := Γ (id). If

γ = ⊥ or τ0−τ > 6, then stop. Else set ν := γ.cspace(cid) and σ := ν.storage. If P 6= γ.end–users, ν =

⊥ or f 6∈ ν.code, then stop. Else send (execute–requested, id , cid , f, z, τ)
τ1≤τ0+∆
↪−−−−−−→ γ.end–users and

compute (σ̂, addL, addR,m) := f(σ, P, τ, z). If m = ⊥, then stop. Else update the channel space Γ :=
UpdateChanSpace(Γ, id , cid , σ̂, ν.code, addL, addR), send (instance–executed, id , cid , σ̂, addL, addR,

m)
τ1≤τ0+∆
↪−−−−−−→ γ.end–users and stop.

Close a ledger state channel. In order to close a ledger state channel with identifier id by party P ∈ γ.end–
users, the environment sends the message (close, id) to the initiating party P . Before a ledger state channel
can be closed, the end-users of the ledger state channel have the chance to register all the contract instances
that they have constructed off-chain. Thus, the initiating party P first (in parallel) registers all the contract
instances which have been updated/peacefully executed but not registered at the ledger yet. This takes up
to 3∆ rounds. Next, P asks the ideal functionality F L̂(∆)

scc (C) representing the state channel contract on the
ledger to close the ledger state channel. Within ∆ rounds, the ideal functionality informs both parties that
the ledger state channel is being closed and gives the other end-user of the ledger state channel time 3∆ to
register contract instances that were not registered by P . If after 3∆ rounds all registered contract instances
are terminated, the ideal functionality adds γ.cash(γ.Alice) coins to γ.Alice’s account on the ledger, and
γ.cash(γ.Bob) coins to γ.Bob’s account on the ledger, deletes the ledger state channel from its channel space
and within ∆ rounds informs both parties that the ledger state channel was successfully closed. Hence, in
the pessimistic case closing can take up to 8∆ rounds. The protocol and the contract functionality for the
ledger state channel closing are presented formally below.
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Protocol Π(1, C): Close a ledger state channel

We use the abbreviated notation from Sec. 4.1 and Sec. 6.1. In addition, let us denote Fscc := F L̂(∆)
scc (C).

Party P upon (close, id)
τ0←−↩ Z

1. Let γP := ΓP (id). For each cid ∈ {0, 1}∗ such that γP .cspace(cid) 6= ⊥ and (id , cid) is not marked

as registered, execute Register(P, id , cid) in round τ0. Then send (contract–close, id)
τ1≤τ0+3∆
↪−−−−−−−→

Fscc and wait.

Party Q upon (contract–closing, id)
τ2≤τ0+4∆
←−−−−−−−↩ Fscc

2. Let γQ := ΓQ(id). For each cid ∈ N such that (id , cid) is not marked as registered in ΓQ and
γQ.cspace(cid) 6= ⊥, call Register(Q, id , cid) in round τ2

Rest of the protocol for T = P,Q (respectively):

3. If (contract–closed, id)
τ3≤τ0+8∆
←−−−−−−−↩ Fscc , then set ΓT (id) := ⊥ and output (closed, id)

τ3
↪−→ Z.

Functionality F L̂(∆)
scc (C): Close a ledger state channel

We use the abbreviated notation from Sec. 4.1 and Sec. 6.1.

Upon (contract–close, id)
τ0←−↩ P let γ := Γ (id) and proceed as follows:

1. Within ∆ rounds send (contract–closing, id)
τ1≤τ0+∆
↪−−−−−−→ γ.end–users.

2. Wait for next at most 3∆ rounds. If in round τ2 ≤ τ0 + 4∆ there exists cid ∈ {0, 1}∗ such
that γ.cspace(cid) 6= ⊥ but the contract instance is not terminated, i.e. σcid .locked 6= 0, where
σcid := γ.cspace(cid).storage, then stop.

3. Else wait for at most ∆ round to add γ.cash(A) coins to A’s account and γ.cash(B) coins to

B’s account on the ledger and set Γ (id) = ⊥. Then send (contract–closed, id)
τ3≤τ0+5∆
↪−−−−−−−→ γ.end–

users.

7 Virtual State Channels

In this section, we first define the code of the virtual state channel contract VSCC, whose instances can be
used to create virtual state channels γ. Then we describe the protocol Π(i, C) that realizes the state channels

ideal functionality F L̂(∆)

ch (i, C) (see Sec. 4) for i > 1 and any set of contract codes C.

7.1 Virtual State Channel Contract

The contract code VSCCi(C) is parameterized by a set C defining the contract codes that can be constructed
in a virtual state channel γ of length i > 0. Consider three parties: Alice, Bob, and Ingrid, and suppose that
Alice and Ingrid have opened a state channel α, and Bob and Ingrid have created a state channel β. During
the creation of the virtual state channel γ between Alice and Bob, the parties Alice and Ingrid agree on
updating α such that it contains the contract instance (σA, VSCCi(C)). Here, σA denotes the initial contract
storage created by calling InitCi , the constructor of VSCCi(C), on input tuple (Alice, τ, γ). On a very informal
level, one may think of the contract storage σA := InitCi (Alice, τ, γ) as being a “copy” of the virtual state
channel description γ, where Ingrid plays the role of Bob. This “copy” of the virtual state channel γ will be
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stored in α.cspace under the identifier cidA := Alice||γ.id. Symmetrically, Ingrid and Bob agree on updating
their state channel β such that it contains the contract instance (σB , VSCCi(C)), where σB := InitCi (Bob, τ, γ)
is the initial state representing γ. This “copy” of the virtual state channel γ will be stored in β.cspace under
the identifier cidB := Bob||γ.id.

Since Ingrid plays the role of Bob in the contract instance cidA, and the role of Alice in the contract
instance cidB , in order to prevent her from losing money, she has to react to events happening in one of the
contract instances and mimic them in the corresponding other contract instance. The contract functions of
VSCCi(C) are defined in such a way that they provide Ingrid with enough time to react on possible changes
in cidA or cidB and to always keep both virtual state channel “copies” in the same state. In some sense,
for the users in γ.end–users, the contract instances referred to by cidA and cidB are now representing the
contracts running on the ledger. They guarantee that as long as the parties γ.end–users behave honestly,
they will never lose money.

Let us take a look at a simple example for the case when i = 3 (see Fig. 10). Suppose that each two
consecutive parties P1, . . . , P4 have ledger state channel with each other. If P1 and P4 want to create a
virtual state channel using the underlying ledger state channels, they can proceed recursively as follows.
First, P1 and P3 create a virtual state channel γ′ of length 2 between each other, where P2 takes the role
of Ingrid. This is done by creating a contract instance with code VSCC2(C ∪ VSCC3(C)) in the ledger state
channel between P1 and P2, resp. between P2 and P3. Let us take a closer look at the meaning of the contract
code VSCC2(C ∪ VSCC3(C)). Very informally, this contract code says that the virtual state channel is of length
2 (this is the reason for VSCC2), and that γ′ can be used by its end-users to create contract instance with
code from C and VSCC3(C). The later are contracts that represent virtual state channels of length 3, which
allows its end-users (of the length 3 virtual state channel) to open contract instances with code from C. Next,
parties P1 and P4 can open the virtual state channel of length 3, where party P3 will take the role of Ingrid.
To this end, P1 and P3 will use their previously created virtual state channel γ′, and P3 and P4 will update
their ledger state channel. The code of the contract instances in these two state channels is VSCC3(C).

The contract code VSCCi(C) will be described and formally defined together with the protocol for virtual
state channels in Sec. 7.2. Here we provide only the interface of the contract VSCCi(C).

Interface of the contract VSCCi(C)

Attributes:
– Mandatory attributes: userL, userR, locked, cashL, cashR (see Sec. 3.1)
– virtual–channel: stores the initial version of the virtual state channel γ;
– cspace: stores the latest registered version of a contract instance created in γ;
– preRegistered: stores a valid version of a contract instance of γ whose registration was not

completed yet;
– toExecute: auxiliary set storing all valid execution requests of a contract instance of γ.

Functions:
– InitCi : the constructor of the contract (see page 30);
– RegisterInstanceCi : a contract function whose purpose is to register a contract instance created

in the virtual state channel γ (see page 32);
– ExecuteInstanceCi : a contract function that is called during the force execution of a contract

instance created in γ (see page 37);
– CloseCi : a contract function called when the virtual state channel is being closed (see page 39).

7.2 Protocol for Virtual State Channels

We now describe the protocol Π(i, C) that Eres -realizes the ideal functionality F L̂(∆)

ch (i, C) for i > 1. The
protocol is in the hybrid world with the hybrid ideal functionality which allows to create, update, execute
and close state channels of lengths up to i−1 in which contract instances with code from the set VSCCi(C)∪C
can be constructed, i.e. the functionality F L̂(∆)

ch (i− 1, VSCCi(C) ∪ C).
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P1 P2 P3 P4VSCC2(C′) VSCC2(C′) VSCC3(C)

VSCC3(C)

C

Fig. 10: The contract instance opened in state channels in order to create a virtual state channel of length 3 in which
a contract instance C ∈ C was opened. In the figure C′ = C ∪ VSCC3(C).

The protocol consists of four subprotocols: Create a virtual state channel, Contract instance update,
Contract instance execute and Close a virtual state channel. Similarly as for ledger state channels, we
additionally define a procedure Registeri(P, id , cid) that registers a contract instance in a virtual state
channel of length i and can be called by parties of the protocol Π(i, C).

The protocol Π(i, C) has to handle messages about state channels of any length j, where 1 ≤ j ≤ i. If a
party P of the protocol Π(i, C) is instructed by the environment to create, update, execute or close a state
channel of length 1 ≤ j < i, the party forwards this message (possibly with some pre-processing) to the

hybrid ideal functionality F L̂(∆)

ch (i − 1, VSCCi(C) ∪ C), and hence we focus on the protocol for virtual state
channels of length exactly i.

Create a virtual state channel. To create the virtual state channel γ of length i in which contract instances
with code from set C can be constructed, the environment sends a message (create, γ) to all three parties
γ.Alice, γ.Bob and γ.Ingrid in the same round τ0. The creation of γ then works as follows.

As already explained in Sec. 7.1, the end-users of the virtual state channel, γ.Alice and γ.Bob, both
need to construct a new contract instance with the code VSCCi(C) in the subchannels they each have with
γ.Ingrid. Let us denote these state channels by α, β in the outline that follows below. To create these contract
instances, party γ.Alice first locally computes the constructor InitCi (γ.Alice, τ, γ) to obtain the initial admis-
sible contract storage of VSCCi(C). Recall that informally this contract storage can be viewed as a “copy” of
the virtual state channel γ. Thereafter, she sends an update request of the state channel α to the hybrid ideal
functionality F L̂(∆)

ch (i−1, VSCCi(C)∪C). At the same time, γ.Bob analogously requests the update of the state

channel β. If γ.Ingrid receives update requests of both state channels α and β from F L̂(∆)

ch (i−1, VSCCi(C)∪C),
she immediately confirms both of them. As already mentioned before, it is crucial for γ.Ingrid that either
both both her state channels α and β are updated or none of them. Only then she is guaranteed that if she
loses coins in the subchannel α, she can claim these coins back from the subchannel β.

To ensure that at the end of the protocol two honest users γ.Alice and γ.Bob can conclude whether the
virtual state channel γ was successfully created, there is one additional technicality in our protocol. Notice
that if γ.Ingrid is honest, once γ.Alice receives a confirmation that her update request of α was successfully
competed, she can conclude that the virtual state channel is created. However, we cannot assume that γ.Ingrid
is honest. Hence, to guarantee that when both γ.Alice and γ.Bob are honest they agree on whether γ was
opened, they exchange confirmation messages at the end of the protocol. To conclude, if creation of a virtual
state channel is successful, both end-users output (created, γ) to the environment after 3 rounds.

We emphasize that creating a virtual state channel runs in constant time – independent of the ledger
processing time ∆ and length of the virtual state channel. This is in contrast to the ledger state channels
with require always 2∆ time for creation. Formal description of the protocol for ledger state channel creation
and the corresponding part of the contract code VSCCi(C) are given below.

29



Protocol Π(i, C): Create a virtual state channel

We use the abbreviated notation from Sec. 4.1 and Sec. 6.1. We denote the hybrid functionality as
Fch := F L̂(∆)

ch (i− 1, VSCCi(C) ∪ C) and the virtual state contract as C := VSCCi(C).

Party T ∈ γ.end–users upon (create, γ)
τ0←−↩ Z:

1. Compute σ̃T := InitCi (T, τ0; γ) and send (update, idT , cidT , σ̃T , C)
τ0
↪−→ Fch , where cidT := T ||γ.id

and idT := γ.subchan(T ).

Party I upon (create, γ)
τ0←−↩ Z:

2. Compute σ̃A := InitCi (γ.Alice, τ0, γ) and σ̃B := InitCi (γ.Bob, τ0, γ). Let idA := γ.subchan(γ.Alice),
idB := γ.subchan(γ.Bob) and cidA := γ.Alice||γ.id and cidB := γ.Bob||γ.id.

3. If both messages (update–requested, idA, cidA, σ̃A, C)
τ0+1←−−−↩ Fch and (update–requested, idB , cidB ,

σ̃B , C)
τ0+1←−−−↩ Fch are received, then set Γ I(γ.id) := γ and send (update–reply, ok , idA, cidA)

τ0+1
↪−−−→

Fch and (update–reply, ok , idB , cidB)
τ0+1
↪−−−→ Fch and wait until time γ.validity. Else stop.

Back to T ∈ γ.end–users

4. If (updated, idT , cidT )
τ0+2←−−−↩ Fch , then send (create–ok, γ)

τ0+2
↪−−−→ γ.other–party(T ). If (create–ok, γ)

τ0+3←−−−↩ γ.other–party(T ), then set ΓT (γ.id) := γ and output (created, γ)
τ0+3
↪−−−→ Z.

5. Wait until time γ.validity.

Contract VSCCi(C): constructor InitCi (P, τ, γ)

If P 6∈ γ.end–users or γ.cash(γ.Alice) < 0 or γ.cash(γ.Bob) < 0 or γ.cspace(cid) 6= ⊥ for some cid ∈
{0, 1}∗ or γ.validity < τ + 2 + 4 ·TimeExeReq(di/2e), then output ⊥. Else output the attribute tuple σ
defined as follows:

(σ.userL, σ.userR) :=

{
(γ.Alice, γ.Ingrid), if P = γ.Alice,

(γ.Ingrid, γ.Bob), if P = γ.Bob,

σ.locked := γ.cash(γ.Alice) + γ.cash(γ.Bob),

(σ.cash(σ.userL), σ.cash(σ.userR)) := (γ.cash(γ.Alice), γ.cash(γ.Bob)),

σ.virtual–channel := γ,

σ.cspace(cid) := ⊥, for all cid ∈ {0, 1}∗,
σ.preRegistered := ⊥

σ.toExecute := ∅.

Register a contract instance in a virtual state channel. Similarly to the procedure Register defined for
ledger state channels, the subprotocol Registeri is called with parameters (P, id , cid) the first time end-
users of a virtual state channel γ with identifier id disagree on a contract instance ν := γ.cspace(cid).
Intuitively, we need the intermediate party γ.Ingrid to play the role of the ledger and resolve the dispute
between γ.Alice and γ.Bob. If the intermediary would be trusted, then both end-users could simply send
their latest contract instance version to γ.Ingrid, who would then decide whose contract instance version is
the latest valid one. Unfortunately, the situation is more complicated since γ.Ingrid is not a trusted party.
She might, for example, stop communicating or collude with one of the end-users. This is the point where the
contract instances with code VSCCi(C) created in the underlying subchannels during the virtual state channel
creation play an important role. Parties instead of sending versions of ν directly to each other send them
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indirectly by executing the contract instances in their subchannels with γ.Ingrid on the contract function
RegisterInstanceCi . Since this execution of the contract instance in the subchannel cannot be stopped (i.e.,
in the worst case it may involve the ledger which resolves the conflict), this guarantees that the end-users
eventually can settle the latest state on which they both have agreed on. Let us now take a closer look at
how this is achieved by VSCCi(C).

Let cidA := γ.Alice||γ.id be the contract instance with code VSCCi(C) stored in the state channel
γ.subchan(γ.Alice) and cidB := γ.Bob||γ.id the contract instance stored in γ.subchan(γ.Bob). The initiat-
ing party (assume for now that it is γ.Alice) first executes cidA on the function RegisterInstanceCi with
input parameters (cid , νA), where νA is γ.Alice’s current off-chain contract instance version. Notice that this
execution is in a state channel of length strictly less than i and hence will be handled by the trusted hybrid
ideal functionality Fch := F L̂(∆)

ch (i − 1, VSCCi(C) ∪ C). The contract function RegisterInstanceCi is defined
in such a way that it first verifies the validity of γ.Alice’s contract instance version, and if all checks pass, it
stores (cid , νA) together with a time-stamp in the auxiliary attribute preRegistered.

The intermediary γ.Ingrid upon receiving the information about the execution of cidA on the function
RegisterInstanceCi with input parameters (cid , νA) can now symmetrically request execution of cidB on
RegisterInstanceCi with input (cid , νA). We emphasize that γ.Ingrid only needs the information that cidA
is being executed and does not need to wait to start the execution until the execution of cidA is completed.

Once γ.Bob is notified about the execution request of cidB on RegisterInstanceCi with input parameters
(cid , νA), he immediately submits νB , his own off-chain contract instance version, by executing cidB on the
contract function RegisterInstanceCi with input parameters (cid , νB). If γ.Bob’s version of the contract
instance with identifier cid was submitted in time and is valid, the contract function RegisterInstanceCi
compares the two submitted versions of cid and stores the one with higher version number in the attribute
cspace(cid). Otherwise, νA will be considered as the registered one. Note that once honest γ.Bob learns about
νA and submits νB , he knows whose contract instance version will be registered in cidB . Thus, he can mark
(id , cid) as registered in ΓBaux and update his channel space accordingly without waiting for the execution
of cidB to be completed. We emphasize that there is no particular order in which parties can register state
and our protocol can handle all possible variants.

Once γ.Alice receives the information about γ.Bob’s version of the contract instance, she already knows
whose contract instance version will be registered in cidA. Thus, analogously to γ.Bob, she can mark (id , cid)
as registered ΓAaux and update her channel space accordingly without waiting for the execution of cidA to
be completed. If γ.Alice does not receive any information about γ.Bob’s version until certain round (because
γ.Bob is corrupt and did not reveal his version to γ.Ingrid or because γ.Ingrid is corrupt and did not execute
cidA with γ.Bob’s version in time), she can conclude that νA will be the registered contract instance version
in cidA and hence mark (id , cid) as registered in ΓAaux .

To conclude, the registration procedure of a virtual state channel of length i can take up to Time
Reg(i) := 4 · TimeExeReq(di/2e) rounds. This follows from the definition of the hybrid ideal functionality
Fch and our assumption that both subchannels have length at most di/2e (see Appx. B).

Before we proceed to the formal description of the registration subprocedure, let us explain here the
reason why we restrict the number of contract instances in a virtual state channel although the syntax as
defined in Sec. 3 supports infinitely many contract instances as in the ledger state channel.

Assume the following scenario. Alice and Bob open a virtual state channel on top of two ledger state
channels which they each have with Ingrid and thereafter they create (off-line) a large amount of contract
instances in this virtual state channel. At some point Alice starts registering all the contract instances by
executing the subchannel she has with Ingrid. According to the protocol, Ingrid has to symmetrically execute
the subchannel she has with Bob otherwise she might lose money. If Bob is corrupt and does not react on
peaceful execution requests, Ingrid has to execute all the requests forcefully on the blockchain. While in
our theoretical model this is not an issue, in practice, this step would be very expensive for Ingrid due to
the large amount of fees Ingrid would have to pay to the miners in common cryptocurrencies such as the
Ethereum network. Thus, if Ingrid has no control over the amount of contract instances that Alice and Bob
can create, the two parties can force Ingrid to pay arbitrary amount of money in fees. Therefore, we restrict
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the number of contract instance so that Ingrid can estimate the costs in fees that might result from the
virtual state channel before she agrees to be the intermediary of that virtual state channel.

Protocol Π(i, C): procedure Registeri(P, id , cid)

We use the abbreviated notation from Sec. 4.1 and Sec. 6.1. In addition, we define an auxiliary procedure
CompareVersions whose formal definition can be found at the end of this protocol part. We denote
Fch := F L̂(∆)

ch (i− 1, VSCCi(C) ∪ C) and TERsub := TimeExeReq(di/2e).

Party P :

1. Let γP := ΓP (id), νP := γP .cspace(cid), idP := γP .subchan(P ), cidP := P ||id and let τP1 be the

current round. Then send (execute, idP , cidP , RegisterInstance
C
i , (cid , νP ))

τP1
↪−→ Fch .

Party I:

2. Upon (execute–requested, idP , cidP , RegisterInstance
C
i , (cid , νP ))

τI1←−↩ Fch , proceed as follows.
Set α := Γ I(idP ), P := α.other-party(I), σP := α.cspace(cidP ).storage, γI := σP .virtual–channel,
Q := γI .other-party(P ), idQ := γI .subchan(Q) and cidQ := Q||γI .id. Then send (execute, idQ, cidQ,

RegisterInstanceCi , (cid , νP ))
τI1
↪−→ Fch .

Party Q:

3. Upon (execute–requested, idQ, cidQ, RegisterInstance
C
i , (cid , νP ))

τQ1←−−↩ Fch , parse Q||id := cidQ,
mark (id , cid) as corrupt in ΓQaux and distinguish the following two situations:
– If VerifyInstance(id , cid , νP ) 6= 1, then stop.
– Else set νQ := ΓQ(id).cspace(cid) and send (execute, idQ, cidQ, RegisterInstance

C
i , (cid , νQ))

τQ1
↪−−→ Fch . Then execute Q.CompareVersions(id , cid , νP ).

Back to party I:

4. If you receive (execute–requested, idQ, cidQ, RegisterInstance
C
i , (cid , νQ))

τI2≤τ
I
1+2·TERsub←−−−−−−−−−−−↩ Fch ,

then send (execute, idP , cidP , RegisterInstance
C
i , (cid , νQ))

τI2
↪−→ Fch .

Back to party P :

5. If (execute–requested, idP , cidP , RegisterInstance
C
i , (cid , νQ))

≤τP1 +4·TERsub←−−−−−−−−−−↩ Fch and it holds
that VerifyInstance(id , cid , νQ) = 1, then execute P.CompareVersions(id , cid , νQ).

6. Else mark (id , cid) as registered in ΓPaux and stop.

Auxiliary procedure: T.CompareVersions(id , cid , ν)

Let νT := ΓT (id).cspace(cid).

1. If ν.version ≥ νT .version, the set ν̂ := ν. Else set ν̂ := νT .
2. Mark (id , cid) as registered in ΓTaux and update the channel space ΓT := UpdateChanSpace∗(ΓT , id ,

cid , ν̂).
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Contract VSCCi(C)

Function RegisterInstanceCi (σ, P, τ ; (cid , νn))

Let γ := σ.virtual–channel, id := γ.id, A := γ.Alice, B := γ.Bob, I := γ.Ingrid and TERsub := Time
ExeReq(di/2e).
1. Make the following checks:

– P ∈ {σ.userL, σ.userR};
– If P ∈ {A,B}, then τ ≤ γ.validity and if P = I, then τ ≤ γ.validity + TERsub ;
– σ.preRegistered = ⊥ or σ.preRegistered = (Q, τQ; cid , νQn ), where P 6= Q and τ − τQ ≤ TERsub

if P ∈ {A,B} and τ − τQ ≤ 3 · TERsub if P = I.
– σ.cspace(cid ′) = ⊥ for every cid ′ ∈ {0, 1}∗;
– If νn 6= ⊥, then VerifyInstance(id , cid , νn) = 1; νn.code ∈ C; and for σn := νn.storage it holds

that {σn.userL, σn.userR} = {A,B}; σn ∈ C.Λ.
If one or more checks fail, then output (σ, 0, 0,⊥).

2. If all checks pass, then define σ̃ := σ and consider the following cases:
– If σ.preRegistered := (P, τP ; cid , νPn ), then output (σ̃, 0, 0,⊥).
– If σ.preRegistered = ⊥, then add (P, τ ; cid , νn) to σ̃.preRegistered. In order to prevent force

execution requests without parallel contract instance registration, delete from σ̃.toExecute all
entries e = (τ ′, cid , Pn, τn, fn, zn) such that τ ′ < τ if P ∈ {A,B} and τ ′+TERsub < τ if P = I.
Then output (σ̃, 0, 0,m), where m := (instance–registering, cid , νn).

– If σ.preRegistered := (Q, τQ; cid , νQn ) and νn = ⊥, then output (σ̃, 0, 0,⊥).
– If σ.preRegistered := (Q, τQ; cid , νQn ) and νn 6= ⊥, then proceed as follows:

(a) If νQn = ⊥ or νn.version > νQn .version, set ν̂n := νn, and set ν̂n := νQn otherwise.
(b) Set σ̃.cspace(cid) := (ν̂n.storage, ν̂n.code) and modify the cash values accordingly, i.e. for

σ̃n := σ̃.cspace(cid).storage
• If σ.userL = I, then σ̃.cash(I) := σ.cash(I)− σ̃n.cash(A) and σ̃.cash(B) := σ.cash(B)−
σ̃n.cash(B).

• If σ.userR = I, then σ̃.cash(I) := σ.cash(I)− σ̃n.cash(B) and σ̃.cash(A) := σ.cash(A)−
σ̃n.cash(A).

for σ̃n := σ̃.cspace(cid).storage
(c) In order to prevent double execution, if ν̂n = νn and there exists an entry e := (τ ′, cid , Q,

τn, fn, zn) ∈ σ̃.toExecute such that for (σ̃n, addL, addR,m
′) := fn(νQn .storage, Q, τn, zn) it

holds that νn.storage = σ̃n, then delete e from σ̃.toExecute.
(d) Finally, delete (Q, τQ; cid , νQn ) from σ̃.preRegistered and output (σ̃, 0, 0,m), where m :=

(instance–registered, cid , ν̂n).

Update a contract instance in a virtual state channel. As long as both end-users of a virtual state channel
follow the protocol, they can update a contract instance exactly the same way as if it would be a ledger state
channel. The differences between updates in a ledger state channel and in a virtual state channel appears
only when end-users of the state channel run into dispute, i.e., when the parties run the contract instance
registration procedure, which was defined above. The pessimistic time complexity of updating a virtual state
channel of length i is equal to TimeReg(i) + 2.

Execute a contract instance in a virtual state channel. In order to execute a contract instance in a virtual
state channel γ with identifier id , the environment sends a message (execute, id , cid , f, z) to one of the end-
users of the virtual state channel. Let us assume for now that this party is γ.Alice and let τ0 be the round when
she received the message from the environment. The party γ.Alice first tries to execute the contract instance
“peacefully”, exactly as if γ would be a ledger state channel (see page 24). In case the peaceful execution fails,
γ.Alice needs to register the contract instance cid by calling the sub-procedure Registeri(γ.Alice, id , cid)
and execute the contract instance “forcefully” via the intermediary γ.Ingrid. Since the intermediary is not
trusted, execution must be performed by executing the contract instances with code VSCCi(C) stored in the
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underlying subchannels of γ (recall that the contract instance in the subchannel γ.subchan(γ.Alice) is stored
under the identifier cidA := γ.Alice||γ.id and the contract instance in the state channel γ.subchan(γ.Bob) is
stored under the identifier cidB := γ.Bob||γ.id). Since both subchannels are state channels of length strictly
less than i, the execution of their contract instances is handled by recursion via the trusted hybrid ideal
functionality Fch := F L̂(∆)

ch (i− 1, VSCCi(C) ∪ C).
The first attempt to design the force execution protocol would be to let γ.Alice execute cidA on the

function ExecuteInstanceCi with parameters param = (cid , γ.Alice, τ0, f, z, sA), where sA is γ.Alice’s signa-
ture on the tuple (cid , γ.Alice, τ0, f, z). We call the value τ0 the time-stamp of the execution request. The
contract function ExecuteInstanceCi would be defined such that it verifies the execution request (for ex-
ample, checks that γ.Alice’s signature is valid, etc.) and then executes the contract instance with identifier
cid . After successful execution of cidA, γ.Ingrid symmetrically executes cidB on the same contract function
ExecuteInstanceCi with the same input parameters param. It is important to emphasize that γ.Ingrid is not
able to modify the tuple param (for example change the time-stamp) in a way that would be accepted by
ExecuteInstanceCi since she would need to forge γ.Alice’s signature.

Unfortunately, this straightforward solution does not work since we allow parties to interact fully concur-
rently. To illustrate the problem consider an example where while the execution between γ.Alice and γ.Ingrid
is running, γ.Bob also wants to forcefully execute the contract instance with identifier cid on different inputs.
This means that before γ.Ingrid has time to execute cidB on γ.Alice’s request, γ.Bob executes cidB on the
function ExecuteInstanceCi with his own parameters param ′ = (cid , γ.Bob, τ ′0, f

′, z′, sB). Consequently, the
order of executions of the contract instance cid is different in cidA and cidB . Depending on the contract
code of cid , this asymmetry may lead to γ.Ingrid losing money.

Therefore, the contract function ExecuteInstanceCi is defined in such a way that it verifies the validity
of the submitted contract instance execution request as before and if all checks pass, then it only stores the
execution request in an auxiliary attribute toExecute. In other words, during the lifetime of the virtual state
channel γ, the contract instances cidA and cidB in the subchannels of γ only collect information about the
force executions of cid but they do not perform any of them. Thus, if γ.Ingrid mimics all requests from cidA
to cidB and vice versa, then, after the last accepted force execution, the (unordered) set toExecute stored
in cidA is equal to the (unordered) set toExecute stored in cidB . This is illustrated in Fig. 11 on a concrete
example of three force execution requests.

All the internal executions are postponed until the virtual state channel is being closed and the contract
instance cidA and cidB are being terminated. Looking ahead, the contract function CloseCi first sorts the
elements of the set toExecute by their time-stamp and only then preforms all the internal executions. This
guarantees the same order of internal executions in both cidA and cidB which implies that both of these
contract instances terminate with the same money distribution. Detailed description of the closing procedure
is given later in this section (see page 38).

To complete the description of our force execution protocol, it remains to discuss how do end-users of the
virtual state channel learn the result of the force execution and when do they output it to the environment.
Since internal executions of cid are postponed until the virtual state channel closure, end-users of the virtual
state channel cannot wait until they learn the results from the hybrid ideal functionality Fch as they did in
the straightforward solution. Instead, they have to derive the results themselves. They proceed as follows.
Party γ.Alice, after initiating the force execution, waits for 2 · TimeExe(di/2e) + 5 rounds to be sure that
γ.Bob did not initiate force execution of cid that should be performed before her own force execution request.
After the waiting is over, she performs her execution of cid locally and outputs the result to the environment.
The other party acts similarly. Once γ.Bob learns about γ.Alice’s force execution, he checks if he has some
pending execution requests that should take place before the one requested by γ.Alice. If this is the case then
he locally executes them first. Thereafter, he locally executes the newly requested by γ.Alice and outputs
the result to the environment.

Execution of a contract instance in a virtual state channel of length i as described above would take in
the pessimistic case up to 5 + TimeReg(i) + 2 ·TimeExe(di/2e) rounds. Unfortunately, it turns out that the
above time complexity is polynomial in the length of the virtual state channel. In order to achieve linear
pessimistic time complexity, we make two important observations which optimize our protocol.
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Fig. 11: In the depicted example, Alice and Bob make three force execution requests of the contract instance cid
created in their virtual state channel γ. In Step (1), Alice executes cidA on the function ExecuteInstanceCi with
parameters param = (cid , γ.Alice, τ0, f, z, sA). In Step (2) Bob executes cidB on the function ExecuteInstanceCi with
parameters param ′ = (cid , γ.Bob, τ0, f

′, z′, sB) and in Step (3) Alice executes cidA on the function ExecuteInstanceCi
with parameters param ′′ = (cid , γ.Alice, τ ′′0 , f

′′, z′′, s′′A), where τ0 < τ ′′0 . Both Alice’s requests are stored in the set
toExecute in cidA before Ingrid mimics the execution request made by Bob (see Step (5)). The example assumes that
Ingrid mimics both Alice’s requests (see Steps (4) and (6)). Although the force execution requests were received by
cidA and cidB in a different order, the (unordered) sets toExecute are at the end identical.19

First note that party γ.Ingrid does not need to wait until execution of cidA is completed in order to initiate
the execution of cidB . Similarly, γ.Bob does not need to wait until execution of cidB is completed to locally
execute the contract instance cid and output the result to the environment. This reduces the time complexity
to 5 + TimeReg(i) + 2 ·TimeExeReq(di/2e) rounds. Secondly, we observe that the registration subprocedure
can be run in parallel with the force execution phase which reduces the pessimistic time complexity to:

TimeExeReq(i) := 5 + 2 · TimeExeReq(di/2e), (1)

TimeExe(i) := 5 + 4 · TimeExeReq(di/2e).

The previous description omits some technicalities and we refer the reader for further details to the full
specification of the protocol and the corresponding part of the contract code VSCCi(C) which can be found
below.

19 Let us emphasize that the figure does not depict the only possible order in which the three force execution requests
can be added to the sets toExecute. It might, for instance, happen that the request param is added to toExecute
after the request param ′′. This is possible since the executions of cidA and cidB are performed in a black-box way
via the hybrid ideal functionality Fch and thus for each request we know only a time interval in which it must be
added to toExecute. The exact round is determined by the adversary (see Sec. 4). Hence, if the execution requests
param and param ′′ are made shortly after each other, the adversary has the power to swap the order in which they
are stored.
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Protocol Π(i, C): Contract instance execution

We use the abbreviated notation from Sec. 4.1 and Sec. 6.1. In addition, we define an auxiliary procedure
VerifyInstance whose formal description can be found at the end of this protocol part. We denote
Fch := F L̂(∆)

ch (i− 1, VSCCi(C) ∪ C) and TERsub := TimeExeReq(di/2e).

Party P upon (execute, id , cid , f, z)
τ0←−↩ Z

1. Let γP := ΓP (id), νP := γP .cspace(cid), σP := νP .storage, CP := νP .code, wP := ΓPaux (id , cid).next-
version and Q := γP .other-party(P ).

2. Set τ1 := τ0 + x, where x is the smallest offset such that τ1 = 1 mod 4 if P = γP .Alice and τ1 = 3
mod 4 if P = γP .Bob.

3. For round τ ∈ [τ0, τ1] proceed as follows: If (id , cid) is marked as corrupt in ΓPaux , goto step step 11.
4. In round τ1, compute (σ̃, addL, addR,m) := f(σP , P, τ0, z). If m = ⊥ , then stop. Otherwise com-

pute sP := SignskP (id , cid , σ̃, CP , wP ), send (peaceful–request, id , cid , f, z, sP , τ0)
τ1
↪−→ Q and goto

step 10.

Party Q upon (peaceful–request, id , cid , f, z, sP , τ0)
τQ1←−−↩ P

5. Let γQ := ΓQ(id), νQ := γQ.cspace(cid), σQ := νQ.storage, CQ := νQ.code, wQ := ΓQaux (id , cid).next-
version. If γQ = ⊥, P,Q 6∈ γQ.end–users, νQ = ⊥ or f 6∈ CQ, then goto step 9.

6. If P = γQ.Alice and τQ1 mod 4 6= 2 or if P = γ.Bob and τQ1 mod 4 6= 0, then goto step 9.

7. If τ0 6∈ [τQ1 − 4, τQ1 − 1] or τ0 ≥ γ.validity, then goto step 9.
8. If (id , cid) is not marked as corrupt in ΓQaux , do:

(a) Compute (σ̃, addL, addR,m) := f(σQ, P, τ0, z). If m = ⊥ or VfypkP (id , cid , σ̃, CQ, wQ; sP ) 6= 1,
then goto step 9.

(b) Output (execute–requested, id , cid , f, z)
τQ1
↪−−→ Z.

(c) Sign sQ := SignskQ(id , cid , σ̃, CQ, wQ), send (peaceful–confirm, id , cid , f, z, sQ)
τQ1
↪−−→ P , set ΓQ :=

UpdateChanSpace(ΓQ, id , cid , σ̃, CQ, addL, addR, w
Q, {sP , sQ}) and ΓQaux (id , cid).next-version :=

wQ + 1.

(d) Output (executed, id , cid , σ̃, addL, addR,m)
τQ1 +1
↪−−−→ Z and stop.

9. Mark (id , cid) as corrupt in ΓQaux . Then goto step 14.

Back to party P

10. Distinguish the following two cases

– If (peaceful–confirm, id , cid , f, z, sQ)
τ2=τ1+2←−−−−−↩ Q such that VfypkQ(id , cid , σ̃, CP , wP ; sQ) = 1,

then set ΓP := UpdateChanSpace(ΓP , id , cid , σ̃, CP , addL, addR, w
P , {sP , sQ}), ΓPaux (id , cid).next-

version := wP + 1, output (executed, id , cid , σ̃, addL, addR,m)
τ2
↪−→ Z and stop.

– Else mark (id , cid) as corrupt in ΓPaux and goto step 11.
11. Let τ3 be the current round (τ3 ≤ τ0 + 5), let idP := γP .subchan(P ), cidP := P ||id, sn :=

SignskP (cid , P, τ0, f, z) and pn := (P, τ0, f, z, sn). Then send (execute, idP , cidP , ExecuteInstance
C
i ,

(cid , pn))
τ3
↪−→ Fch and add (f, P, z, τ0) to ΓPaux (id , cid).toExecute. If (id , cid) is not marked as reg-

istered in ΓPaux , then run in parallel Registeri(P, id , cid).
12. Wait until round τ4 := τ0 + 4 · TERsub + 5. In order to prevent double execution, first check if

ΓP (id).cspace(cid).storage = σ̃. If this is the case (i.e.Q registered the contract instance version after
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execution), then delete (f, P, z, τ0) from Γaux (id , cid).toExecute, output (executed, id , cid , σ̃, addL,

addR,m)
τ4
↪−→ Z and stop. Otherwise execute P.LocalExe(τ4, id , cid , τ0).

Party I:

13. Upon receiving (execute–requested, idP , cidP , ExecuteInstance
C
i , (cid , pn))

τI1←−↩ Fch , proceed as fol-
lows. Set α := Γ I(idP ), P := α.other-party(I), σP := α.cspace(cidP ).storage, γI := σP .virtual–channel,
Q := γI .other-party(P ), idQ := γI .subchan(Q) and cidQ := Q||γI .id. Then send (execute, idQ, cidQ,

ExecuteInstanceCi , (cid , pn))
τI1
↪−→ Fch .

Party Q:

14. Upon receiving (execute–requested, idQ, cidQ, ExecuteInstance
C
i , (cid , pn))

τQ2←−−↩ Fch , then parse
Q||id := cidQ and (P, τ0, f, z, sn) := pn. Let γQ := ΓQ(id) and νQ := γQ.cspace(cid). If γQ = ⊥,
νQ = ⊥, then stop. Else mark (id , cid) as corrupt in ΓQaux . If VfypkP (cid , P, τ0, f, z; sn) 6= 1 or

f 6∈ νQ.code, then stop. Else add (f, P, z, τ0) to ΓQaux (id , cid).toExecute.

15. If (id , cid) is marked as registered in ΓQaux , then output (execute–requested, id , cid , f, z)
τQ2
↪−−→ Z and

execute the subprocedure Q.LocalExe(τQ2 , id , cid , τ0).

16. Else wait until round τQ3 := τ0 + 2 · TERsub + 5. If (id , cid) is not marked as registered after the
waiting is over (i.e. P requested force execution without starting the contract instance registration in
parallel), then delete (f, P, z, τ0) from Γaux (id , cid).toExecute and stop. Otherwise output (execute–

requested, id , cid , f, z)
τQ3
↪−−→ Z and execute the subprocedure Q.LocalExe(τQ3 , id , cid , τ0).

Auxiliary procedure: T.LocalExe(τ, id , cid , τ0)

1. Let γ := ΓT (id) and let σ(0) := γ.cspace(cid).storage.
2. Let E ⊆ ΓTaux (id , cid).toExecute consist of all tuples (f ′, T ′, z′, τ ′0), where τ ′0 ≤ τ0.

3. Let |E| = ` and (e(1), . . . , e(`)) be such that e(k) = (τ (k), T
(k)
n , τ

(k)
n , f

(k)
n , z

(k)
n ) ∈ E for every k ∈ [1, `],

τ
(1)
n ≤ · · · ≤ τ (`)n and if τ

(i)
n = τ

(j)
n for some i < j, then the following holds:

– If T (i) 6= T (j) , then T (i) = A and T (j) = B.
– If T (i) = T (j), then either fi <C fj , where <C is total ordering of the contract functions defined

by the contract code C, or fi = fj and z
(i)
n ≤lex z

(j)
n , where ≤lex is the lexicographic ordering of

binary strings.
4. For k = 1 to `

(a) Compute (σ(k), add
(k)
L , add

(k)
R ,m(k)) := f(σ(k−1), T (k), τ

(k)
0 , z(k)).

(b) Output (executed, id , cid , σ(k), add
(k)
L , add

(k)
R ,m(k))

τ
↪−→ Z

(c) Set ΓT := UpdateChanSpace(ΓT , id , cid , σ(k), C, add
(k)
L , add

(k)
R ), where C := γ.cspace(cid).code.

(d) Delete e(k) from ΓTaux (id , cid).toExecute.

Contract VSCCi(C)

Function ExecuteInstanceCi (σ, P, τ, (cid , Pn, τn, fn, zn, sn))

Let γ := σ.virtual–channel, A := γ.Alice, B := γ.Bob, I := γ.Ingrid. In addition, let TERsub := Time
ExeReq(di/2e). First, make the following checks:
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– P ∈ {σ.userL, σ.userR} and Pn ∈ {A,B};
– VfypkPn

(cid , Pn, τn, fn, zn; sn) = 1;

– If P ∈ {A,B}, then τ − τn ≤ 5 and P = Pn;
– If P = I, then τ − τn ≤ 5 + TERsub and Pn ∈ {σ.userL, σ.userR} ∩ {A,B};
– τn ≤ γ.validity.

If one of the checks fails, then output (σ, 0, 0,⊥). Else let σ̃ := σ, add (τ, cid , Pn, τn, fn, zn) to σ̃.toExecute
and output (σ̃, 0, 0,m) for m := (instance–executing, cid , Pn, τn, fn, zn, sn).

Close a virtual state channel. Recall that in case of ledger state channels, the environment instructs one
party to close the ledger state channel. The parties of the ledger state channel have some time to register
all contract instances that were opened in the ledger state channel off-chain. If thereafter there is a contract
instance in the ledger state channel which is not terminated, then the ledger state channel is not closed.

For virtual state channels the situation is different. We require that the closing procedure of a virtual
state channel γ always starts in round γ.validity and always results in γ being closed. In other words, both
contract instances with code VSCCi(C) that were opened in the subchannels of γ must be terminated. This
ensures that virtual state channels can never infinitely block closure of ledger state channels. Let us now
explain how the protocol “Close a virtual state channel” works.

In round γ.validity both end-users of the virtual state channel start registering the contract instance if
it has been created in the virtual state channel γ but has never been registered before. Thereafter, γ.Alice
requests execution of the contract instance cidA := γ.Alice||γ.id stored in the subchannel γ.subchan(γ.Alice),
on the contact function CloseCi . In case γ.Alice is corrupt and does not request execution of cidA on the
function CloseCi , γ.Ingrid can request it herself after certain time has passed. We proceed similarly for γ.Bob.

The contract function CloseCi is defined in such a way that it first (if necessary) finalizes registration of
a contract instance cid .20 This step is needed in case one party initiated registration of a contract instance
with identifier cid but the other party did not react. As a next step the function CloseCi internally executes
all the force execution requests stored in toExecute. As already discussed before (see page 34), the order
in which the force execution requests of the contract instance cid are processed is very important. To this
end, the contract function CloseCi sorts the elements of the set toExecute, which are tuples of the form
(cid , P, τ0, f, z), according to the following rules:

1. Time-stamp τ0: requests with lower time-stamp are processed first;
2. Party P : requests made by γ.Alice’s are processed first;
3. Function call f : we assume that every contract code contains a total ordering of its functions;
4. Input parameter z: the lexicographic ordering of binary string is applied.

Consider again the example from Fig. 11. Recall that the set toExecute has at the end of execution
phase three element: param = (cid , γ.Alice, τ0, f, z, sA); param ′ = (cid , γ.Bob, τ0, f

′, z′, sB) and param ′′ =
(cid , γ.Alice, τ ′′0 , f

′′, z′′, s′′A), where τ0 < τ ′′0 . By applying the rules from above, the execution request defined
by param ′′ will be processed last since it has the highest time-stamp. Since both param and param ′ have
the same time-stamp, the Rule 2. is applied. To conclude, the function CloseCi will first process param, then
param ′ and lastly param ′′.

Let us now discuss what happens if there exists a registered contract instance cid which is however not
terminated (the amount of locked coins is not equal to zero). The first idea would be to let CloseCi ignore
the contract instance. However, this would lead to the problem that the intermediary of the virtual state
channel, γ.Ingrid, loses money (because some money may still be locked in the contract) without ever having
the chance to react to virtual state channel closing. Instead, the contract function CloseCi gives all the
locked coins in the contract instance to the intermediary. This implies that end-users of a virtual channels
are responsible to open a contract instance only if they are certain that they can terminate it before the
channel validity expires since otherwise they will lose money.

20 Recall that we assume that there can be at most one contract instance in a virtual state channel.

38



Finally, the contract function verifies that the current value of the attribute cash is non-negative for both
users and that the amount of coins that were originally invested into the virtual state channel is equal to
the current amount of coins in the virtual state channel. If this is the case, CloseCi unlocks for each user the
current amount of coins it holds in the channel contract. If one of the users have negative balance in the
virtual state channel or the amount of invested coins is not equal to the current amount of coins, then any
trading that happened between the end-users of γ is reverted by CloseCi . This again guarantees that γ.Ingrid
cannot lose money when γ.Alice and γ.Bob are malicious.

The time complexity of closing a virtual state channel of length i can be computed as 2 · TimeExe
Req(di/2e)+2 ·TimeExe(di/2e). This follows from the simple observation that in case parties need to register
a contract instance before closing the channel, both end-users should initiate the registration procedure in the
same round (i.e. Registeri(γ.Alice, id , cid) and Registeri(γ.Bob, id , cid) are run in parallel) which reduces
the time complexity of the registration phase.

Before we provide the full specification of the protocol and the corresponding part of VSCCi(C), let us
briefly explain one additional technicality. Recall that in case γ.Ingrid is corrupt, it can happen that the
contract instances with code VSCCi(C) are opened in the subchannels of γ although the virtual state channel
γ was is not successfully created. This in particular means that the coins needed to create γ are locked in
the subchannels and can be unlocked only after round γ.validity by executing the contact function CloseCi .

Protocol Π(i, C): Close a virtual state channel

Let γ the the virtual state channel requested to be created in round τ0 and let cidT := T ||γ.id and
idT := γ.subchan(T ). We use the abbreviated notation from Sec. 4.1 and Sec. 6.1. In addition, we denote

Fch := F L̂(∆)

ch (i− 1, VSCCi(C) ∪ C), TV := γ.validity,TEsub := TimeExe(di/2e) and TERsub := TimeExe
Req(di/2e).

Party T ∈ γ.end–users in round TV

1. If the virtual channel was not created, i.e. ΓT (γ.id) = ⊥ but (updated, idT , cidT )
≤τ0+2+4·TERsub←−−−−−−−−−−−↩

Fch was received, then goto step 3.
2. If γT := ΓT (γ.id) 6= ⊥, then for cid ∈ {0, 1}∗ such that γT .cspace(cid) 6= ⊥ and (id , cid) is not

marked as registered in ΓTaux , call Registeri(T, id , cid).

3. Send (execute, idT , cidT , Close
C
i , ∅)

TV+TERsub+TEsub
↪−−−−−−−−−−−−→ Fch .

Party I

For both T ∈ {A,B} behave as follows:

4. If you did not receive (execute–requested, idT , cidT , Close
C
i , ∅)

≤TV+2·TERsub+TEsub←−−−−−−−−−−−−−−−↩ Fch , then send

(execute, idT , cidT , Close
C
i , ∅)

TV+2·TERsub+TEsub
↪−−−−−−−−−−−−−→ Fch .

Party T = A,B

5. Upon (executed, idT , cidT , σT , LT , RT ,mT )
τ≤TV+2·TERsub+2·TEsub←−−−−−−−−−−−−−−−−−↩ Fch , where mT = (contract–

closed), set γT (id) := ⊥ and output (closed, id)
τ
↪−→ Z.

Contract VSCCi(C): function CloseCi (σ, P, τ)

Let L := σ.userL, R := σ.userR, γ := σ.virtual–channel, A := γ.Alice, B := γ.Bob, I := γ.Ingrid.
1. Make the following checks: γ 6= ⊥; P ∈ {L,R}; if P ∈ {A,B}, then τ < γ.validity+TERsub +TEsub ;

if P = I, then τ < γ.validity + 2 ·TERsub + TEsub . If one of the checks fails, the output (σ, 0, 0,⊥).
2. Let σ(0) := σ.
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3. If σ.cspace(cid) = ⊥ for every cid ∈ {0, 1}∗ and σ.preRegistered 6= ⊥, then parse (T, τT ; cidT , νT ) :=
σ.preRegistered and define σ(0).cspace(cidT ) := νT .

4. If σ(0).cspace(cid) 6= ⊥ for some cid ∈ {0, 1}∗, let us denote this identifier cid∗, then let E ⊆
σ(0).toExecute consist of all tuples (τ ′, cid∗, Tn, τn, fn, zn), where fn is a contract function with
respect to C := σ(0).cspace(cid∗).code.

5. Let |E| = ` and (e(1), . . . , e(`)) be such that e(k) = (τ (k), T
(k)
n , τ

(k)
n , f

(k)
n , z

(k)
n ) ∈ E for every k ∈ [1, `],

τ
(1)
n ≤ · · · ≤ τ (`)n and if τ

(i)
n = τ

(j)
n for some i < j, then the following holds:

– If T (i) 6= T (j) , then T (i) = A and T (j) = B.
– If T (i) = T (j), then either fi <C fj , where <C is total ordering of the contract functions defined

by the contract code C, or fi = fj and z
(i)
n ≤lex z

(j)
n , where ≤lex is the lexicographic ordering of

binary strings.

6. For k = 1 to ` do the following: Compute σ(k) := Evaluate(σ(k−1), cid∗, T
(k)
n , f

(k)
n , z

(k)
n ) and delete

e(k) from σ(k).toExecute.
7. Set σ̃ := σ(`). Let investL := γ.cash(A), investR := γ.cash(B) denote the balance when the contract

was opened and let finalL := σ̃.cash(L) and finalR := σ̃.cash(R) denote the current balance.
Distinguish the following two situations:
– If X := (investL − finalL) + (investR − finalR) ≥ 0, then set σ̃.cash(L) := (investL − finalL)

and addL := finalL. Analogously for σ̃.cash(R) and addR. If X < 0, then set σ̃.cash(I) :=
σ̃.cash(I) +X. In addition, add X coins to addL if I = L and to addR if I = R.

– Otherwise set σ̃.cash(L) := 0, σ̃.cash(R) := 0 and (addL, addR) := (investL, investR).
8. Set σ̃.locked := 0, σ̃.virtual–channel := ⊥ and output (σ̃, addL, addR,m), where m = (contract–

closed).

Auxiliary procedure: Evaluate(σ, cid , Pn, τn, fn, zn)

Let γ := σ.virtual–channel, I := γ.Ingrid, ν := σ.cspace(cid), σn := ν.storage and P := γ.end–users ∩
{σ.userL, σ.userR}
1. Compute (σ̃n, addL, addR,mn) = fn(σn, Pn, τn, zn).
2. If mn = ⊥, then output σ. Otherwise let σ̃ := σ and make the following changes:

(a) Set σ̃.cspace(cid) := (σ̃n, ν.code)
(b) If P = σn.userL, then σ̃.cash(P ) := σ.cash(P ) + addL and σ̃.cash(I) := σ.cash(I) + addR.
(c) If P = σn.userR, then σ̃.cash(P ) := σ.cash(P ) + addR and σ̃.cash(I) := σ.cash(I) + addL.
Then output σ̃.

7.3 Time complexity

Let us summarize the time complexity of our virtual state channel construction and formally define the
timing functions TimeReg(i,∆), TimeExeReq(i,∆) and TimeExe(i,∆) for i > 1.

The optimistic time complexity of updating and executing a contract instance in a virtual state channel
is the same as in case of ledger state channels, i.e. 2 reps. 5 rounds. However, let us emphasize that in case of
virtual state channels also the optimistic time complexity of channel creation is independent of the channel
length since it take 3 rounds for any virtual state channel length i > 1.

The pessimistic time complexities of the protocol Π(i, C) for a virtual state channel of length i > 1 can
be expressed in terms of the time complexities to execute its subchannels (which are state channels of length
di/2e), using recursively Eq.(1). Since we know that TimeExeReq(1, ∆) = 5+4∆ we can solve the recurrence
and obtain

TimeExeReq(i,∆) := 5 + 2 · TimeExeReq(di/2e, ∆)

≤ 2i · (10 + 4∆)− 5 = O (∆ · i) . (2)
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Registering a contact instance in a virtual state channel of length i takes at most TimeReg(i,∆) := 4 ·Time
ExeReq(di/2e, ∆) rounds. Updating a contract instance in a virtual state channel of length i is upper bounded
by 2 + 4 · TimeExeReq(di/2e, ∆). Contract instance execution takes at most TimeExe(i,∆) := 5 + 4 · Time
ExeReq(di/2e, ∆). In addition, we have the guarantee that the virtual state channel will be closed before
round γ.validity + 2TimeExeReq(di/2e, ∆) + 2TimeExe(di/2e, ∆).

8 Conclusion

We showed how to build general state channel networks, i.e., state channels of arbitrary length in which
arbitrary contracts can be opened and executed off-chain. Our modular approach allows for a recursive
construction of state channels (i.e. a virtual channel of length i is build on top of two state channels of length
di/2e) which significantly simplifies the description of our construction. All protocols were proven to be
secure in the global UC model and their optimistic time complexity is independent of the channel length. In
the pessimistic case when malicious parties try to delay the protocol execution as much as possible, the time
complexity of our construction is linear in channel length. We did not aim to optimize the pessimistic time
complexity of our protocols since this would make their description even more complex. More fine grained
timing analysis, which would reduce the constants in the pessimistic time complexity, and corresponding
optimization of our state channel protocol would be highly recommended before the implementation. Another
question is whether virtual state channels with time complexity independent of the channel length could be
designed (for example using techniques from [22]).

Incentivizing intermediaries An important practical question is why would a party want to become an inter-
mediary of a virtual state channel. Although our construction does guarantee that an honest intermediary
will never lose coins, the fact that an intermediary has to lock coins for the entire lifetime of the virtual
channel makes this role unattractive. This problem can be solved by adding the concept of service fees to our
construction. Let us sketch how this could be done: both Alice and Bob would lock some additional coins in
the VSCCi contract instance each of them opens in their channel with Ingrid during the virtual state channel
creation. More precisely, in order to create a virtual state channel γ, Alice would lock γ.cash(A) + serviceFee
coins in the channel α she has with Ingrid and Bob would lock γ.cash(B) + serviceFee coins in the channel β
he has with Ingrid. During the closure of γ (assuming that it was successfully created), the service fee would
be unlocked from the VSCC contract instances in favor of Ingrid in both channels α and β.

Suitable contract codes – a cautionary note We would like to point out one subtle issue, that users of future
real-life implementations need to be aware of. As discussed in Sec. 3.2, the security guarantees provided
to the end-users of a state channel are strongly dependent on the code of the contract instance that is
opened in the state channel (in other words: our system is only as secure as the contract that the user run
in the channel). In principle, this is the same as in case of the standard contracts on the ledger, however
there are several additional aspects that have to be taken into account when designing contract codes for
state channels. Recall that all coins that are locked in a contract instance when the underlying virtual state
channel is closed are assigned to the intermediary of the channel. Therefore, it is important that a contract
instance is terminated by any end-user before the validity of the underlying virtual state channel expires.
Another important point to keep in mind is that although our construction guarantees that end-user of a
state channel can execute a contract instance in any round and on any contract function, it might take (in
the pessimistic case) up to TimeExeReq(i) rounds before the other party is notified about the execution and
TimeExe(i) rounds before the execution takes place (where i denotes the length of the state channel). Thus,
compared to the contract deployment directly on the blockchain, the notification and execution delay might
be longer.
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A Routing payments using hash-locked transactions

Consider the situation when Alice has a payment channel with Ingrid and Ingrid has a payment channel
with Bob. Assume that Alice wants to send one coin to Bob and route the payment via Ingrid. The first
idea would be to let Alice update the channel with Ingrid such that Alice pays one coin to Ingrid and then
let Ingrid symmetrically update the channel with Bob such that Ingrid pays one coin to Bob. However, this
naive solution allows a malicious Ingrid to abort after receiving the coin from Alice and never pay anything
to Bob.

Let us briefly explain how to solve the above problem using hash-locked transactions. Let H be some
fixed hash function. Bob first picks a random value x ∈ {0, 1}∗ and sends the hash value h = H(x) to Alice
who creates a hash-locked transaction HLTA. Informally, this transaction promises to update the channel
between Alice and Ingrid such that Ingrid earns one coin if she publishes a preimage of h before a timeout
tA. Ingrid, upon receiving the hash-locked transaction HLTA from Alice, creates a hash-locked transaction
HLTB which promises to update the channel between Ingrid and Bob such that Bob earns one coin if he
publishes a preimage of h before the timeout tB < tA. Hence, if Bob reveals x before time tB , he gets one
coin from Ingrid. Since tB < tA, Ingrid has time to use the value x to get one coin from Alice and thus
finalize the payment. In case Bob does not reveal x to Ingrid before the timeout tB , Ingrid can refund her
coin locked in HLTB . Analogously, in case Ingrid does not reveal x, Alice can refund her coin locked in HLTA
after round tA.

B Restrictions on the Environment

In order to simplify the description of the state channel ideal functionality F L̂(∆)

ch (i, C) and the protocol
Π(i, C) realizing it, we define a set of restricted environments Eres by the restrictions give below (some of
the restrictions were already informally introduced in Sec. 4). Every environment Z ∈ Eres has to satisfy the
following:

– Z never sends the same message to the same party twice.
– Z sends a message (create, γ), where γ is a ledger state channel, to all honest parties in the set γ.end–

users in the same round τ0 (and it never send this message to any other honest party). In addition,
we assume the following: there does not exist a state channel γ′ with γ.id = γ′.id (and no such state
channel is currently being created); parties of the ledger state channel are from the set P; γ.cash(A) ≥
0, γ.cash(B) ≥ 0; both parties of the ledger state channel have enough funds on the ledger for the channel
creation;21 the set of contract instances is empty; and γ.length = 1. In addition, we assume that if A is
honest and the environment does not receive the message (created, γ) from A within 2∆ rounds, it sends
the message (refund, γ) to party A.

– Z sends the message (create, γ), where γ is a virtual state channel , to all honest parties in the set
γ.end–users ∪ {I} in the same round τ0 (and it never send this message to any other honest party). In
addition, we assume the following: there does not exists a state channel γ′ with γ.id = γ′.id (and no
such state channel is currently being created); parties of the virtual state channel are from the set P;
γ.cash(A) ≥ 0, γ.cash(B) ≥ 0; the set of contract instances is empty; γ.validity < τ0 + 2 + 4 · TimeExe
Req(di/2e); j := γ.length ≤ i. Additionally, we assume the following about the subchannels of γ:
• If honest P ∈ γ.end–users receives the message (create, γ), then the following must be satisfied:

the subchannel α := γ.subchan(P ) must exist; α.end–users = {P, I}; α.length ≤ dj/2e; γ.validity >
α.validity + 2TimeExeReq(dj/2e) + 2TimeExe(dj/2e); α.cspace(cid) = ⊥ for every cid ∈ {0, 1}∗ if α
is a virtual state channel; both P and I have enough funds in α.

• If honest I receives the message (create, γ), then both subchannels α := γ.subchan(A) and β :=
γ.subchan(B) exist; α.end–users = {A, I} and β.end–users = {B, I}; j = α.length+β.length, α.length ≤
dj/2e and β.length ≤ dj/2e; γ.validity > max{α.validity, β.validity} + 2TimeExeReq(dj/2e) + 2Time

21 In case the environment requests opening more ledger state channels at the same time, we require that all parties
have enough funds for all ledger state channels that are being created.
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Exe(dj/2e); α.cspace(cid) = ⊥ for every cid ∈ {0, 1}∗ if α is a virtual state channel; similarly
β.cspace(cid) = ⊥ for every cid ∈ {0, 1}∗ if β is a virtual state channel; A and I have enough funds
in α and B and I have enough funds in β.

– If Z sends the message (update, id , cid , σ̃, C) or (update–reply, ok , id , cid) to an honest party P , then a
state channel γ with identifier id exists in Γ ; P ∈ γ.end–users; the state channel supports the contract
code ; the new contract instance σ̃ is admissible with respect to C, i.e. σ̃ ∈ C.Λ; it holds that σ̃.locked =
σ̃.cash(σ̃.userL)+ σ̃.cash(σ̃.userR) and both parties have enough cash in the state channel for the contract
instance update.22 If the contract instance has been updated before, i.e., if ν := γ.cspace(cid) 6= ⊥, then
the following must hold: the contract instance code remains the same, i.e., ν.code = C; the users of the
contract instance remain the same, i.e., for σ := ν.storage we have σ.userL = σ̃.userL and σ.userR =
σ̃.userR; and σ.locked = σ.cash(σ.userL) + σ.cash(σ.userR). Z never asks to update a contract instance
that is currently being updated or executed. In addition, if Γ (id) is a virtual state channel, then we
assume that there is no other contract instance in the virtual state channel (and no other instance is
being created) and the message was send before round γ.validity.

– If Z sends the message (execute, id, cid , f, z) to an honest party P , then a state channel γ with identifier id
exists in Γ , P ∈ γ.end–users, the contract instance cid has already been defined in γ, i.e. γ.cspace(cid) 6=
⊥, and f is a contract function with respect to γ.cspace(cid).code, i.e. f ∈ γ.cspace(cid).code. If γ is a
virtual state channel, then we assume that the message is sent before round γ.validity.

– If Z sends the message (close, id) to honest party P , then state channel γ with identifier id exists in Γ ,
γ is a ledger state channel and P ∈ γ.end–users.

C Balance security

Let us prove that the state channels ideal functionality F L̂(∆)

ch (i, C) satisfies the balance security property.
The remaining security and efficiency goals that were defined in Sec. 3.2 follow directly from the formal
definition of the ideal functionality given in Figure 6 and were already discussed in Sec. 4.

Let γ be a virtual state channel of length j requested to be created in round τ0. First note that if creation
of a virtual state channel γ fails (at least one of the parties does not confirm the creation within three
rounds), then all coins locked in the subchannels in Step 1 (see virtual state channel creation Figure 6) are
unlocked back to the subchannels latest in round γ.validity + 2TimeExeReq(dj/2e) + 2TimeExe(dj/2e) (see
Step 3 of virtual state channel creation in Figure 6).

In order to argue about the balance security in case a virtual state channel γ is successfully created, let
us state an auxiliary lemma. Intuitively, it says that the amount of coins in γ does not change during the
lifetime of the channel. Before we state the lemma, let us recall that we do not allow a virtual state channel γ
to contain multiple contract instances, i.e. there exists at most one cid ∈ {0, 1}∗ such that γ.cspace(cid) 6= ⊥.

Lemma 1. Let γ be a virtual state channel of length j > 1 created in round τ1 and let X be the amount
of coins initially locked in the virtual state channel, i.e. X := γ.cash(A) + γ.cash(B). Let γ̂ be the version
of the virtual state channel in round τ ∈ [τ0, γ.validity + 2TimeExeReq(dj/2e) + 2TimeExe(dj/2e)]. If there
exists cid ∈ {0, 1}∗ such that σcid .locked 6= 0 for σcid := γ̂.cspace(cid).storage, then set ĉ := σcid .locked; else
set ĉ := 0. It holds that X = γ̂.cash(A) + γ̂.cash(B) + ĉ.

Proof. Let γ1 be a successfully created virtual state channel in round τ1 and let τ2 be the first round in
which the state channel is successfully updated. First note that for τ ∈ (τ1, τ2) the lemma holds triv-
ially since the channel did not change. Let γ2 be the channel after the update and let us denote σ2 :=
γ2.cspace(cid).storage. By definition of the ideal functionality and the auxiliary procedure UpdateChanSpace

it holds that γ2.cash(A) = γ1.cash(A) − σ2.cash(A) and γ2.cash(B) = γ1.cash(B) − σ2.cash(B). By the

22 In case the environment requests constructing more contract instances at the same time, we require that both
parties have enough funds in the state channel for all of them.
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restrictions on the environment (see Appx. B), we know that σ2.locked = σ2.cash(A) + σ2.cash(B). Thus

γ1.cash(A) + γ1.cash(B) =

= γ2.cash(A) + σ2.cash(A) + γ2.cash(B) + σ2.cash(B)

= γ2.cash(A) + γ2.cash(B) + σ2.locked

which is exactly what we needed to prove.
By the restrictions on the environment (see Appx. B), the only way how the channel can change in round

τ ∈ (τ2, γ1.validity+2TimeExeReq(dj/2e)+2TimeExe(dj/2e)] is via another successful update or a successful
execution the contract instance cid . Since the argument in case of another successful update of the contract
instance cid is very similar to the one above, let us discuss only the case of successful contract instance
execution execution in round τ .

Let γ3 be the channel before the execution of a contract function and let γ4 be the channel after the
execution. In addition, let σ3 := γ3.cspace(cid).storage and let σ4 := γ4.cspace(cid).storage. By definition of
a contract function, we know that the output of the function contains two value addA and addB which are
such that σ3.locked− σ4.locked = addA + addB . By definition of the auxiliary procedure UpdateChanSpace

called by the ideal functionality on inputs addA and addB , we know that γ4.cash(A) = γ3.cash(A) + addA
and γ4.cash(B) = γ3.cash(B) + addB . Thus,

γ3.cash(A) + γ3.cash(B) + σ3.locked =

= γ4.cash(A)− addA + γ4.cash(B)− addB + σ3.locked

= γ4.cash(A) + γ4.cash(B) + σ4.locked

which is exactly what we needed to prove.

The balance security now easily follows. Let γ̂ be the virtual state channel when the channel is being
closed. If there is no contract instance with locked coins in γ̂, then the intermediary gets γ̂.cash(A)+γ̂.cash(B)
coins which by Lemma 1 is equal to the amount of coins the intermediary had to lock in Step 1. If there is a
contract instance with ĉ locked coins in γ̂, then the intermediary gets γ̂.cash(A)+ γ̂.cash(B)+2ĉ coins which
is by Lemma 1 more than what the intermediary initially locked in Step 1 (concretely, the intermediary gains
ĉ coins in this case).

D The Lottery contract

The contract code Clot(i) allows parties to play a lottery in a state channel of length up to i. The contract
Clot(i) was informally described in Sec. 4.3, here we present it formally (see Fig. 12).
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Lottery contract Clot(i)

Constructor Initlot(P, τ, (A,B))

Output a contract storage σ defined as follows:
σ.userL := A, σ.userR := B, σ.cash(σ.userL) := 1, σ.cash(σ.userR) := 1, σ.locked := 2, σ.com = ⊥ and σ.bit = ⊥.

Function Com(σ, P, τ ; c)

If P 6= σ.userL or if σ.com(P ) 6= ⊥, then output (σ, 0, 0,⊥). Else set σ̃ := σ, set σ̃.com := (c, τ) and output
(σ̃, 0, 0, (committed, P, c, τ)).

Function Reveal(σ, P, τ ; rB)

If P 6= σ.userR or if σ.com(P ) = ⊥, then output (σ, 0, 0,⊥). Else set σ̃ := σ, set σ̃.bit := (rB , τ) and output
(σ̃, 0, 0, (revealed, P, rB , τ)).

Function Open(σ, P, τ ; (rA, s))

If P 6= σ.userL, σ.com = ⊥, σ.bit(P ) 6= ⊥ or (rA, s) is not a valid opening of σ.com, then output (σ, 0, 0,⊥).
Else parse (rB , τ

′) := σ.bit and compute x := rA ⊕ rB . If x = 0, then set (addA, addB) := (2, 0) else set
(addA, addB) := (0, 2). Define σ̃ := σ, set σ̃.locked = 0, σ̃.cash(userL) := 1−addL and σ̃.cash(userR) := 1−addR.
Then output (σ̃, addL, addR, (opened, P, rA, τ)).

Function Punish(σ, P, τ ; z)

If P ∈ {σ.userL, σ.userR} and σ.locked 6= 0, then consider the following three situations:

1. If σ.com = ⊥, P = σ.userR and τ > σ.start + TimeExe(i), then set σ̃ := σ and define σ̃.locked = 0,
σ̃.cash(userL) := 1, σ̃.cash(userR) := −1 and output (σ̃, 0, 2, (punished)).

2. If σ.com 6= ⊥, P = σ.userL, σ.bit = ⊥ and τ > σ.start+ 2 ·TimeExe(i), then set σ̃ := σ, define σ̃.locked = 0,
σ̃.cash(userL) := −1 and σ̃.cash(userR) := 1 and output (σ̃, 2, 0, (punished)).

3. If σ.com 6= ⊥, P = σ.userR, σ.bit 6= ⊥ and τ > σ.start+ 3 ·TimeExe(i), then proceed as follows. Set σ̃ := σ,
define σ̃.locked = 0, σ̃.cash(userL) := 1 and σ̃.cash(userR) := −1 and output (σ̃, 0, 2, (punished)).

Else output (σ, 0, 0,⊥)

Fig. 12: The lottery contract.
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E Security analysis for ledger state channels

In this section, we will show that for any set of contract codes C, the Π(1, C) protocol Eres -emulates the ideal

functionality F L̂(∆)

ch (1, C) in F L̂(∆)
scc (C)-hybrid world. In other words, for any PPT adversary Adv we construct

a simulator Sim1 that operates in the F L̂(∆)

ch (1, C) world and simulates the F L̂(∆)
scc (C)-hybrid world to any

environment Z ∈ Eres .
The two main challenges of our analysis are the following: (i) ensure the consistency of timings (if an

honest party P outputs a message m in round τ in the hybrid world, then P must output the same message
m in the same round τ in the ideal world as well) and (ii) ensure the consistency of balances of parties on the
ledger (i.e. if the state of accounts on the ledger in round τ is equal (x1, . . . , xn) in the hybrid world, then
the state of user’s accounts in round τ must be (x1, . . . , xn) in the ideal world as well). Recall that the ledger

L̂ is a global ideal functionality thus the environment can read its state at any point in time. Inconsistencies
on the ledger could therefore reveal to the environment whether it is communicating with the real or ideal
world.

The simulator Sim1 constructed in this section will internally run a copy the hybrid world. It will main-
tain a channel space ΓT and the auxiliary channel space ΓTaux for every honest party T and the channel
space Γ for the hybrid ideal functionality F L̂(∆)

scc (C). In addition, the simulator will generate a key pair
(pkT , skT )←$KGen(1λ) for every honest party T during the setup phase. Recall that since there are no pri-

vate inputs or messages being sent, we implicitly assume that the ideal functionality F L̂(∆)

ch (1, C) on receiving
a message m from party P immediately sends a message (P,m) to the simulator Sim1 (this convention was
introduced in Sec. 4). The simulator Sim1 thus receives all the input messages of the honest parties from

the ideal functionality F L̂(∆)

ch (1, C). Since Sim1 receives messages addressed to the adversary Adv (which it
internally runs) from the environment Z, it knows the behavior of corrupt parties in the protocol as well as
the instruction given by the adversary to the hybrid ideal functionality F L̂(∆)

scc (C). This, in particular, means

that our simulator Sim1 can instruct the ideal functionality F L̂(∆)

ch (1, C) to make changes on the ledger L̂ in
the same round as the adversary Adv would instruct the hybrid ideal functionality F L̂(∆)

scc (C) to make the
changes on the ledger. To simplify the pseudocode description of the simulator Sim1, we do not write these
instructions explicitly.

We will discuss each part of the protocol separately and for each of them distinguish all possible corruption
combinations: both parties are honest, only one party is honest and both parties are corrupt. We present a
full description of the simulator Sim1 for all of these cases and provide a detailed proof sketch of the ideal and
hybrid world indistinguishability for the ledger state channel creation when A is honest and B is corrupt.
The argumentation in the remaining cases is very similar and thus omitted from this version of the paper.

Create a ledger state channel. Let us begin with the description of the simulator Sim1 for the ledger state
channel creation. We will first discuss in detail the case when A is honest and B is corrupt (the corresponding
pseudocode description of the simulator can be found below ).

According to the protocol Π(1, C), honest party A upon receiving the message (create, γ) from the
environment Z sends the message (construct, γ) to the hybrid ideal functionality F L̂(∆)

scc (C). Since we assume
that Z ∈ Eres , all checks made by the hybrid ideal functionality F L̂(∆)

scc (C) will pass. This can be verified
by careful inspection of Eres definition (see page 44) and the description of the ideal functionality F L̂(∆)

scc (C)
for ledger state channel creation (see page 22). The hybrid ideal functionality F L̂(∆)

scc (C) within ∆ rounds

removes coins from A’s account on the ledger L̂. The exact round is determined by the adversary Adv. The
simulator Sim1 is receiving messages from Z addressed to the adversary Adv; thus, it can instruct the ideal
functionality F L̂(∆)

ch (1, C) to remove coins from A’s account in the same round (recall our convention that
these messages from the simulator to the ideal functionality are implicit in our descriptions to for better
readability). After removing the coins from A’s account, the hybrid ideal functionality F L̂(∆)

scc (C) sends the
message (initializing, γ) to party B which is exactly what the simulator Sim1 does as well.

If B is instructed by the environment Z to immediately reply to the hybrid ideal functionality F L̂(∆)
scc (C)

with the message (confirm, γ), the ledger state channel γ will be created in the hybrid world. Therefore,

the simulator Sim1 sends the message (create, γ) to the ideal functionality F L̂(∆)

ch (1, C) on behalf of B which
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ensures the channel creation in the ideal world as well. The simulator again instructs the ideal functionality
F L̂(∆)

ch (1, C) to remove coins from B’s account in the same round the adversary Adv would instruct the
hybrid ideal functionality F L̂(∆)

scc (C). After removing coins from B’s account, the hybrid ideal functionality
immediately sends the message (initialized, γ) to both end–users which makes honest A output the message
(created, γ) to the environment. Therefore, the simulator Sim1 sends the message (initialized, γ) to B right

after the coins are removed. In addition, the ideal functionality F L̂(∆)

ch (i, C) after removing coins from B’s
account sens the message (created, γ) to both end-users which results in the honest party A forwarding it
to the environment. Thus, the content and timing of the honest party’s output message to the environment
is the same in both worlds. Finally, the simulator Simi stores the new ledger state channel γ in the channel
space of the hybrid ideal functionality Γ and the channel space of the honest party ΓA and stops.

If B is not instructed by the environment Z to confirm the channel creation by sending the message
(confirm, γ) to the hybrid ideal functionality F L̂(∆)

scc (C), the ledger state channel γ will not be created in the

hybrid world. Thus, simulator Sim1 does not send any message to F L̂(∆)

ch (1, C) on B’s behalf in this case. By
our assumption that Z ∈ Eres , the honest party A receives the message (refund, γ). In the hybrid world, A
forwards this message to the hybrid ideal functionality F L̂(∆)

scc (C) who adds coins back to A’s account on the
ledger within ∆ rounds. In the ideal world, A is a dummy party and thus forwards the message to the ideal
functionality F L̂(∆)

ch (1, C). Hence, the only thing that the simulator Sim1 has to do is to instruct the ideal

functionality F L̂(∆)

ch (1, C) to add the coins back to A’s account in the correct round and then stop.
The pseudocode description of the simulator Sim1 that we just defined as well as the description of Sim1

for the remaining corruption combinations with at last one corrupted party can be found below.

Simulator Sim1: Create a ledger state channel

We use the abbreviated notation from Sec. 4.1 and Sec. 6.1. Let Fch := F L̂(∆)

ch (1, C).

Case A is honest and B is corrupt:

Upon (A, create, γ)
τ0←−↩ Fch , proceed as follows:

1. Wait until round τ1 ≤ τ0 +∆ to send (initializing, γ)
τ1
↪−→ B.

2. If (confirm, γ)
τ1←−↩ B, then send (create, γ)

τ1
↪−→ Fch on behalf of B. Send (initialized, γ)

τ2≤τ1+∆
↪−−−−−−→ B

and set ΓA(γ.id) := γ, Γ (γ.id) := γ and stop.

Case A is corrupt and B is honest:

Upon (construct, γ)
τ0←−↩ A proceed as follows:

1. If A does not have enough funds on the ledger, there already exists a state channel γ′ such that
γ.id = γ′.id in Γ , γ.cspace 6= ∅, or γ.cash(A) < 0 or γ.cash(B) < 0, then stop.

2. Else send (create, γ)
τ0
↪−→ Fch on behalf of A and in round τ1 ≤ τ0 +∆ send (initializing, γ)

τ1
↪−→ A.

3. Distinguish the following two situations:

– If (B, create, γ)
τ0←−↩ Fch , then send (initialized, γ)

τ0+2∆
↪−−−−→ A and set ΓB(γ.id) := γ, Γ (γ.id) := γ

and stop.

– Else wait. If (refund, γ)
τ3>τ0+2∆←−−−−−−−↩ A, then send (refund, γ)

τ3
↪−→ Fch .

Case A and B are corrupt:

Upon (construct, γ)
τ0←−↩ A proceed as follows:

1. If A does not have enough funds on the ledger, there already exists a state channel γ′ such that
γ.id = γ′.id, γ.cspace 6= ∅ or γ.cash(A) < 0 or γ.cash(B) < 0, then stop.
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2. Else send (create, γ)
τ0
↪−→ Fch on behalf of A and in round τ1 ≤ τ0 + ∆ send (initializing, γ)

τ1
↪−→

γ.end–users.
3. Distinguish the following two situations:

– If (confirm, γ)
τ1←−↩ B and B has sufficient funds on the ledger, then (create, γ)

τ1
↪−→ Fch and on

behalf of B and wait until round τ2 ≤ τ0 + 2∆ to send (initialized, γ)
τ2
↪−→ γ.end–users. Then set

Γ (γ.id) := γ and stop.

– Else wait if (refund, γ)
τ3>τ0+2∆←−−−−−−−↩ A. In such a case send (refund, γ)

τ3
↪−→ Fch and stop.

What remains to discuss the case when both parties of the ledger state channel are honest. The only
thing the simulator has to do is to instruct the ideal functionality to remove coins from ledger accounts in
the correct round which can be done since it received the message addressed to the adversary Adv. After
removing the coins from both user’s accounts, the simulator updates the channel space sets, i.e. defines
ΓA(γ.id) = ΓB(γ.id) = Γ (γ.id) = γ.

Registration of a contract instance in a ledger state channel. Since registration of a contract instance is defined
as a separate procedure that can be called by parties of the protocol Π(1, C), we define a “subsimulator”
SimRegister(P, id , cid) which can be called as a procedure by the simulator Sim1. We define the subsimulator
formally below. Let us here discuss one technicality.

As already mentioned, one of the main challenges of the simulation is to ensure the consistency of the
ledger accounts in the ideal and hybrid world. In particular, if two parties created a ledger state channel
between them (i.e. their coins were subtracted from their ledger accounts), the simulator has to ensure that
once this ledger state channel is closed, the amount of coins returned to each party’s account on the ledger
is the same in the real and hybrid world. In case at least one party of the ledger state channel is honest,
every time the channel is updated or executed, the ideal functionality F L̂(∆)

ch (1, C) receives the corresponding
message from the honest party and thus has the same view on the channel’s state as the honest party in the
hybrid world. The situation is more tricky in case both parties are corrupt.

If two corrupt parties have a ledger state channel between them, they can update its state arbitrarily (even
to an invalid state). As long as these updates are done off-chain (parties exchange messages with each other
and do not send any message to the hybrid ideal functionality F L̂(∆)

scc (C)), no changes in the channel space

Γ of ideal functionality F L̂(∆)

ch (1, C) are needed. Only when parties successfully register a contract instance
with the hybrid ideal functionality F L̂(∆)

scc (C), the update of the ledger state channel resulting from the new
contract instance becomes “official”. Thus, the simulator has to ensure that these changes to the ledger state
channel are also made in the ideal functionality F L̂(∆)

ch (1, C). This is the reason, why the simulator has to
send update message to the ideal functionality on behalf of the corrupt parties, in case they successfully
register a contract instance in the hybrid world.

Sub-simulator : SimRegister(P, id , cid)

We use the abbreviated notation from Sec. 4.1 and Sec. 6.1. Let Fch := F L̂(∆)

ch (1, C).

Case P and Q are honest:

1. Let γP := ΓP (id), νP := γP .cspace(cid) and γQ := ΓQ(id), νQ := γQ.cspace(cid).
2. Wait up to 2∆ rounds and then proceed as follows. If νP .version ≥ νQ.version, then set ν̃ :=

(νP .storage, νP .code). Else set ν̃ := (νQ.storage, νQ.code).
3. Mark (id , cid) as registered in ΓPaux , Γ

Q
aux and update all three sets Γ, ΓP , ΓQ, i.e. set Γ := Update

ChanSpace∗(Γ, id , cid , ν̃), ΓP := UpdateChanSpace∗(ΓP , id , cid , ν̃), ΓQ := UpdateChanSpace∗(
ΓQ, id , cid , ν̃).

Case P is honest and Q is corrupt:
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1. Let γP := ΓP (id), νP := γP .cspace(cid), σP := νP .storage.

2. Set τ0 be the current round. Send (instance–registering, id , cid , νP )
τ1≤τ0+∆
↪−−−−−−→ Q.

3. If (instance–register, id , cid , νQ)
τ1←−↩ Q where νQ is a valid contract instance (both signatures

νQ.sign(A) and νQ.sign(B) are valid, the amount of locked coins in νQ is non-negative, users of the
contract instance are A and B, the contract instance storage is admissible and the contract code is
from the set C), then proceed as follows. If νP .version ≥ νQ.version, then ν̃ := (νP .storage, νP .code)

and otherwise set ν̃ := (νQ.storage, νQ.code). Thereafter (instance–registered, id , cid , ν̃)
τ2≤τ1+∆
↪−−−−−−→

Q and goto step 5.

4. Else define ν̃ := (νP .storage, νP .code), send (instance–registered, id , cid , ν̃)
τ2≤τ0+3∆
↪−−−−−−−→ Q and goto

step 5.
5. Mark (id , cid) as registered in ΓPaux , set Γ := UpdateChanSpace∗(Γ, id , cid , ν̃) and ΓP := Update

ChanSpace∗(ΓP , id , cid , ν̃).

Case P is corrupt and Q is honest:

Upon (instance–register, id , cid , νP )
τ0←−↩ P , s.t. Γ (id) 6= ⊥, Γ (id).cspace(cid) = ⊥, νP is a valid contract

instance (both signatures νP .sign(A) and νP .sign(B) are valid, the amount of locked coins in νP is non-
negative, users of the contract instance are A and B, the contract instance storage is admissible and
the contract code is from the set C), then do:

1. Within ∆ rounds, send (instance–registering, id , cid , νP )
τ1≤τ0+∆
↪−−−−−−→ P .

2. Let γQ := ΓQ(id), νQ := γQ.cspace(cid). If νP .version ≥ νQ.version, then ν̃ := (νP .storage, νP .code)
and otherwise set ν̃ := (νQ.storage, νQ.code).

3. Send (instance–registered, id , cid , ν̃)
τ2≤τ1+∆
↪−−−−−−→ P , mark (id , cid) as registered in ΓQaux and then set

Γ := UpdateChanSpace∗(Γ, id , cid , ν̃) and ΓQ := UpdateChanSpace∗(ΓQ, id , cid , ν̃).

Case P and Q are corrupt :

Upon (instance–register, id , cid , νP )
τ0←−↩ P , s.t. Γ (id) 6= ⊥, Γ (id).cspace(cid) = ⊥, νP is a valid contract

instance (both signatures νP .sign(A), νP .sign(B) are valid, the amount of locked money in νP is non-
negative, users of the contract instance are A and B, the contract instance storage is admissible and
the contract code is from the set C), then do:

1. Within ∆ rounds, send (instance–registering, id , cid , νP )
τ1≤τ0+∆
↪−−−−−−→ Γ (id).end–users.

2. If (instance–register, id , cid , νQ)
τ1←−↩ Q s.t. νQ is a valid contract instance (both νQ.sign(A) and

νQ.sign(B) are valid signatures, the amount of locked money in νQ is non-negative, users of the con-
tract instance are A and B, the contract instance storage is admissible and the contract code is from
the set C), then proceed as follows. If νP .version ≥ νQ.version, then ν̃ := (νP .storage, νP .code) and

otherwise set ν̃ := (νQ.storage, νQ.code). Thereafter send (instance–registered, id , cid , ν̃)
τ2≤τ1+∆
↪−−−−−−→

Γ (id).end–users and goto step 4.

3. Else proceed as follows. If (finalize–register, id , cid)
τ0+2∆←−−−−↩ P , then define ν̃ := (νP .storage, νP .code),

send (instance–registered, id , cid , ν̃)
τ2≤τ0+3∆
↪−−−−−−−→ Γ (id).end–users and goto step 4.

4. Update the channel space Γ := UpdateChanSpace∗(Γ, id , cid , ν̃). Send (update, id , cid , ν̃.storage,
ν̃.code) ↪−→ Fch on behalf of P and (update–reply, ok , id , cid) ↪−→ Fch on behalf of Q.

Update a contract instance in a ledger state channel If both parties are honest, the simulator does not
need to give any instructions to the ideal functionality and only updates the sets ΓP , ΓQ,ΓPaux , ΓQaux ,
when the messages (P,update, id , cid , σ̃, C) and (Q,update–reply, ok , id , cid) are received from the ideal
functionality. In case both parties are corrupt, the simulator can internally simulate the communication
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of the two corrupt parties and in case the registration procedure is started by one of them, it executes
the subsimulator SimRegister for the case when both parties are corrupt. Note that if the registration
procedure is successful (a contract instance gets registered), the subsimulator SimRegister instructs the ideal
functionality to update the contract instance accordingly. We define the simulator Sim1 for the remaining
two case, i.e. when only the initiating party is corrupt and if only the reacting party is corrupt, below.

Simulator Sim1: Contract instance update

We use the abbreviated notation from Sec. 4.1 and Sec. 6.1. Let Fch := F L̂(∆)

ch (1, C).

Case P is honest and Q is corrupt:

Upon (P,update, id , cid , σ̃, C)
τ0←−↩ Fch do:

1. If (id , cid) is marked as corrupt in ΓPaux , then stop. Else let γP := ΓP (id), νP := γP .cspace(cid),
σP := νP .storage. If νP = ⊥, then set wP := 1, else set wP := ΓPaux (id , cid).next-version.

2. Sign sP := SignskP (id, cid , σ̃, C, wP ) and send (update, sP , id , cid , σ̃, C)
τ0+1
↪−−−→ Q of behalf of P .

3. Distinguish the following cases:

– If (update–ok, sQ)
τ1≤τ0+1
←−−−−−↩ Q such that VfypkQ(id, cid , σ̃, C, wP ; sB) = 1, then send (update–

reply, ok , id , cid)
τ1
↪−→ Fch on behalf of Q, set ΓPaux (id , cid).next-version := w + 1 and ΓP :=

UpdateChanSpace∗(ΓP , id , cid , σ̃, C, wP , {sP , sQ}).
– If (update–not–ok, sQ)

τ1≤τ0+1
←−−−−−↩ Q such that VfypkB (id, cid , σP , C, wP + 1; sQ) = 1, then com-

pute sP := SignskP (id , cid , σP , C, wP + 1) and set ΓPaux (id , cid).next-versionP := w + 2 and

ΓP := UpdateChanSpace∗(ΓP , id , cid , σP , C, wP + 1, {sP , sQ}).
– Else mark (id , cid) as corrupt in ΓPaux and execute SimRegister(P, id , cid). If after the sub-

simulator is executed (in round τ2 ≤ τ0 + 3∆ + 1) it holds that ΓP (id).cspace(cid) = (σ̃, C),

then (update–reply, ok , id , cid)
τ2
↪−→ Fch on behalf of Q.

Case P is corrupt and Q is honest:

Upon (update, sP , id , cid , σ̃, C)
τ0←−↩ P do:

1. If (id , cid) is marked as corrupt in ΓQaux , then stop. Let γQ := ΓQ(id). If γQ = ⊥ or there exists
cid ′ 6= cid such that γ.cspace(cid) 6= ⊥, then stop; else let νQ := γQ.cspace(cid). If νQ = ⊥, then
set wQ := 1, else set wQ := ΓQaux (id , cid).next-version.

2. If VfypkP (id , cid , σ̃, C, wQ; sP ) 6= 1, then mark (id , cid) as corrupt in ΓQaux and stop. Else send

(update, id , cid , σ̃, C)
τ0
↪−→ Fch on behalf of P .

3. Distinguish the following cases:

– If (Q,update–reply, ok , id , cid)
τ1≤τ0+1
←−−−−−↩ Fch , then compute sQ := SignskQ(id , cid , σ̃, C, wQ),

set ΓQaux (id , cid).next-version := wQ+1 and ΓQ := UpdateChanSpace∗(ΓQ, id , cid , σ̃, C, wQ, {sP ,
sQ}) and send (update–ok, sQ)

τ0+2
↪−−−→ P on behalf of Q and stop.

– Else set ΓQaux (id , cid).next-version := wQ+2 compute sQ := SignskQ(id , cid , νQ.storage, νQ.code,

wQ + 1) and on behalf of Q send (update–not–ok, sQ)
τ0+2
↪−−−→ P .

Execute a contract instance in a ledger state channel In case both parties are honest, the simulator only has
to instruct the ideal functionality to output the result in the correct round. Let τ0 be the round in which
the environment instructed the initiating party P to execute. Then the simulator sets τ1 := τ0 + x, where
x is the smallest offset such that τ1 = 1 mod 4 if P = γ.Alice and τ1 = 3 mod 4 if P = γ.Bob and waits
until round τ1 to instruct the ideal functionality to output the result. Then it updates both channel spaces
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ΓP , ΓQ, ΓPaux and ΓQaux accordingly. We formally describe the situation when one or two parties are corrupt
below.

Simulator Sim1: Contract instance execution.

We use the abbreviated notation from Sec. 4.1 and Sec. 6.1. Let Fch := F L̂(∆)

ch (1, C).

Case P is honest and Q is corrupt:

Upon (P, execute, id , cid , f, z)
τ0←−↩ Fch , let γP := ΓP (id), νP := γP .cspace(cid), σP := νP .storage and

wP := ΓPaux (id , cid).next-version. In addition, set τ1 := τ0 + x, where x is the smallest offset such that
τ1 = 1 mod 4 if P = γP .Alice and τ1 = 3 mod 4 if P = γP .Bob. Wait until round τ1 and then proceed
as follows:
1. If (id , cid) is not marked as corrupt in ΓPaux , do:

(a) Set (σ̃, addL, addR,m) := f(σP , P, τ0, z). If m = ⊥, then stop.
(b) Else compute sP := SignskP (id , cid , σ̃, νP .code, wP ), send (peaceful–request, id , cid , f, z, sP , τ0)

τ1+1
↪−−−→ Q and instruct the ideal functionality to output the execute requested message.

(c) If (peaceful–confirm, id , cid , f, z, sQ)
τ1+1←−−−↩ Q such that VfypkQ(id , cid , σ̃, νP .code, wP ; sQ) =

1, then set ΓPaux (id , cid).next-version := wP + 1 and ΓP := UpdateChanSpace(ΓP , id , cid , σ̃,
νP .code, addL, addR, w

P , {sP , sQ}). Then instruct the ideal functionality to output the result.
Else mark (id , cid) as corrupt in ΓPaux and execute the subsimulator SimRegister(P, id , cid) in
round τ1 + 2. If after the execution of the sub-simulator (in round τ1 ≤ τ0 + 3∆ + 5) it holds
that σP = σ̃, then set ΓP := UpdateChanSpace(ΓP , id , cid , σ̃, νP .code, addL, addR), instruct
the ideal functionality to output the result and stop. Else goto step 2b.

2. If (id , cid) is marked as corrupt in ΓPaux
(a) If (id , cid) is not marked as registered in ΓPaux , then execute the sub-simulator SimRegister(P,

id , cid).

(b) Let τ3 be the current round. If (executed, id , cid , σ, addL, addR,m)
τ4≤τ3+∆←−−−−−−↩ Fch , then update

the channel space ΓP and Γ , i.e. set Γ := UpdateChanSpace(Γ, id , cid , σ, νP .code, addL, addR)
and ΓP := UpdateChanSpace(ΓP , id , cid , σ, νP .code, addL, addR). Thereafter send (instance–

executed, id , cid , σ, addL, addR,m)
τ4
↪−→ Q and stop. Else stop.

Case P is corrupt and Q is honest:

Upon (peaceful–request, id , cid , f, z, sP , τ0)
τ1←−↩ P

1. Let γQ := ΓQ(id), νQ := γQ.cspace(cid), σQ := νQ.storage, wQ := ΓQaux (id , cid).next-version. If
γQ = ⊥, P 6∈ γQ.end–users, νQ = ⊥ or f 6∈ νQ.code, then goto step 4.

2. If P = γQ.Alice and τ1 mod 4 6= 1 or if P = γ.Bob and τ1 mod 4 6= 3, then goto step 4.
3. If (id , cid) is not marked as corrupt in ΓQaux , do:

(a) Compute (σ̃, addL, addR,m) := f(σQ, P, τ0, z).
(b) If m = ⊥ or VfypkP (id , cid , σ̃, νQ.code, wQ; sP ) 6= 1, then goto step 4.

(c) Send (execute, id , cid , f, z)
τ1
↪−→ Fch on behalf of P and instruct the ideal functionality to set

τ := τ0 .
(d) Compute the signature sQ := SignskQ(id , cid , σ̃, νQ.code, wQ), send (peaceful–confirm, id , cid ,

f, z, sQ)
τ1+1
↪−−−→ P , set ΓQaux (id , cid).next-version := wQ + 1, ΓQ := UpdateChanSpace(ΓQ, id ,

cid , σ̃, νQ.code, addL, addR, w
Q, {sP , sQ}), instruct the functionality to deliver the result and

stop.
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4. Mark (id , cid) as corrupt in ΓQaux and stop.

Upon P starting the registration procedure for id , cid , then execute the sub-simulator SimRegister(P,
id , cid).

Upon (instance–execute, id , cid , f, z, τ0)
τ2←−↩ P , then

1. If τ2 − τ0 > 5, then stop. Let γ := Γ (id). If γ = ⊥ or P 6∈ γ.end–users, then stop. Else let
ν := γ.cspace(cid), σ := ν.storage. If ν = ⊥ or f 6∈ ν.code, stop.

2. Else send (execute, id , cid , f, z)
τ2
↪−→ Fch on behalf of P , instruct the functionality Fch to set τ := τ0

and within ∆ round instruct the functionality to output the result.

3. When (executed, id , cid , σ, addL, addR,m)
τ3≤τ2+∆←−−−−−−↩ Fch , then update the sets ΓQ and Γ , i.e.

set Γ := UpdateChanSpace(Γ, id , cid , σ, νQ.code, addL, addR) and ΓQ := UpdateChanSpace(ΓQ,

id , cid , σ, νQ.code, addL, addR). Then send (instance–executed, id , cid , σ, addL, addR,m)
τ3
↪−→ P and

stop.

Case P and Q are corrupt:

Internally simulate the communication of the corrupt parties. If P starting the registration procedure
for id , cid , then execute the sub-simulator SimRegister(P, id , cid) for the case when both parties are
corrupt. Note that if the registration procedure is successful (a contract instance gets registered), the
subsimulator SimRegister instructs the ideal functionality to update the contract instance accordingly.

If (instance–execute, id , cid , f, z, τ0)
τ2←−↩ P , then

1. If τ2 − τ0 > 5, then stop. Let γ := Γ (id). If γ = ⊥ or P 6∈ γ.end–users, then stop. Else let
ν := γ.cspace(cid), σ := ν.storage. If ν = ⊥ or f 6∈ ν.code, stop.

2. Else send (execute, id , cid , f, z)
τ2
↪−→ Fch on behalf of P , instruct the ideal functionality Fch to set

τ := τ0 and within ∆ round instruct the Fch to output the result.

3. When (executed, id , cid , σ, addL, addR,m)
τ3≤τ2+∆←−−−−−−↩ Fch , then set Γ := UpdateChanSpace(Γ, id ,

cid , σ, ν.code, addL, addR), send (instance–executed, id , cid , σ, addL, addR,m)
τ3
↪−→ P and stop.

Close a ledger state channel. The simulator Sim1 is formally defined for all four possible situations below .

Simulator Sim1: Close a ledger state channel

We use the abbreviated notation from Sec. 4.1 and Sec. 6.1. Let Fch := F L̂(∆)

ch (1, C).

Case P,Q are honest

Upon (P, close, id)
τ0←−↩ Fch , proceed as follows. Let γP := ΓP (id). If there exists cid ∈ {0, 1}∗ such that

γP .cspace(cid) 6= ⊥, the execute SimRegister(P, id , cid) for the case when both parties are honest. In

round τ1 ≤ τ0 + 8∆ instruct the ideal functionality to output the result. If (closed, id)
τ1≤τ0+8∆
←−−−−−−−↩ Fch ,

set Γ (id) := ⊥, ΓP (id) := ⊥, ΓQ(id) := ⊥ and stop.

Case P is honest and Q is corrupt:

Upon (P, close, id)
τ0←−↩ Fch , do:

1. Let γP := ΓP (id). If there exists cid ∈ {0, 1}∗ such that γP .cspace(cid) 6= ⊥ but the contract
instance has never been registered, execute SimRegister(P, id , cid).
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2. After the execution of the subsimulator, wait for at most ∆ rounds to send the message (contract–

closing, id)
τ2≤τ0+4∆
↪−−−−−−−→ Q.

3. Execute the sub-simulator SimRegister(Q, id , cid) if registration started by Q for some cid .

4. In round τ3 ≤ τ0 + 8∆ instruct the ideal functionality to output the result. If (closed, id)
τ3←−↩ Fch ,

set Γ (id) := ⊥ ΓP (id) := ⊥ and send (contract–closed, id)
τ3
↪−→ Q. Then stop.

Case P is corrupt and Q is honest:

1. Execute the sub-simulator SimRegister(P, id , cid) if registration started by P for some cid in round
τ0.

2. After the execution (in round τ1 ≤ τ0 + 2∆), if (contract–close, id)
τ1←−↩ P , where Γ (id) 6= ⊥, then

send (close, id)
τ1
↪−→ Fch on behalf of P .

3. Wait at most ∆ rounds to (contract–closing, id)
τ2≤τ0+3∆
↪−−−−−−−→ P .

4. Let γQ := ΓQ(id). If there exists cid such that γQ.cspace(cid) 6= ⊥ but the contract instance has
never been registered, execute the sub-simulator SimRegister(Q, id , cid).

5. Upon (closed, id)
τ5≤τ0+8∆
←−−−−−−−↩ Fch , ΓQ(id) := ⊥ and (contract–closed, id)

τ5
↪−→ P and stop.

Case P and Q are corrupt:

1. Execute the sub-simulator SimRegister(P, id , cid) if registration started by P for some cid . Note
that if the registration procedure is successful (a contract instance gets registered), the subsimulator
SimRegister instructs the ideal functionality to update the contract instance accordingly.

2. After the execution (in round τ1 ≤ τ0 + 2∆), if (contract–close, id)
τ1←−↩ P , where Γ (id) 6= ⊥, then

send (close, id)
τ1
↪−→ Fch on behalf of P .

3. Wait at most ∆ rounds to (contract–closing, id)
τ2≤τ0+4∆
↪−−−−−−−→ Γ (id).end–users.

4. Execute the sub-simulator SimRegister(Q, id , cid) if registration started by Q for some cid . Again,
if the registration procedure is successful, the subsimulator SimRegister instructs the ideal func-
tionality to update the contract instance accordingly.

5. In round τ3 ≤ τ0 + 8∆ instruct the ideal functionality to output the result. If (closed, id)
τ1≤τ0+8∆
←−−−−−−−↩

Fch , set Γ (id) := ⊥ and stop.

F Security analysis for virtual state channels

The purpose of this section is to show that for any i > 1 and any set C of contract codes, the protocol Π(i, C)
emulates the ideal functionality F L̂(∆)

ch (i, C) in F L̂(∆)

ch (i− 1, VSCCi(C) ∪ C)-hybrid world against environments
from the set Eres .

The proof consists of two parts. First, we need to prove an auxiliary lemma stating that an instance
of the protocol Π(i, C) called by an environment Z ∈ Eres is Eres -respecting. This is because the hybrid

ideal functionality F L̂(∆)

ch (i− 1, VSCCi(C)∪ C) is emulated by the protocol Π(i− 1, VSCCi(C)∪ C) only against
environments from the set Eres . This proves that the hybrid world is well defined and the composition of
state channel protocols is possible. Thereafter we can construct the simulator Simi in order to prove that the
protocol Π(i, C) in the hybrid world of F L̂(∆)

ch (i− 1, VSCCi(C)∪C) emulates the ideal functionality F L̂(∆)

ch (i, C)
against environments from the set Eres .

Lemma 2. For any i > 1, set of contract codes C, PPT adversary Adv and environment Z ∈ Eres , the
protocol Π(i, C) is Eres-respecting.

Proof. We need to prove that for any PPT adversary Adv and any environment Z ∈ Eres , honest parties
of the protocol Π(i, C) make calls to the hybrid ideal functionality F L̂(∆)

ch (i − 1, VSCCi(C) ∪ C) according to
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the restrictions defining the set Eres . In other words, honest parties of the protocol jointly represent an
environment from the set Eres .

If the environment Z sends a message to an honest party in the protocol regarding a state channel of
length j < i, then the party simply forwards the message to the hybrid ideal functionality. Since Z ∈ Eres ,
no invalid calls can be made to the hybrid functionality in this way. It remains to show that the protocol is
Eres -respecting even if the environments sends a message regarding a virtual state channel of length i.

First note that honest parties in the protocol Π(i, C) upon receiving a message about a virtual state
channel of length i only ask the hybrid ideal functionality to update or execute a contract instance in a state
channel but never to create or close a state channel. Thus, none of the restrictions regarding creating or
closing a state channel can be violated.

Parties of the protocol send messages regarding update of a contract instance to the hybrid ideal func-
tionality F L̂(∆)

ch (i − 1, VSCCi(C) ∪ C) only during the protocol “Create a virtual state channel”. Since we
assume that parties of the protocol receive messages from an environment Z ∈ Eres , we have the guaran-
tee that they all receive the message (create, γ) in the same round τ0. According to the protocol, party
γ.Alice sends in round τ0 the message (update, idA, cidA, σ̃A, VSCCi(C)), where σ̃A := InitCi (γ.Alice, τ0, γ),
idA := γ.subchan(γ.Alice) and cidA := γ.Alice||γ.id. Hence clearly σ̃A is admissible with respect to VSCCi(C)
and σ̃A.locked = σ̃A.cash(A) + σ̃A.cash(I). We can argue similarly with the update of the subchannel be-
tween γ.Ingrid and γ.Bob. Since Z ∈ Eres , we know that both subchannels of the virtual state channel γ
exist, that they contain no contract instances and that they have enough funds. In addition, the subchan-
nels do support contracts with code VSCCi(C) since they were created via the hybrid ideal functionality

F L̂(∆)

ch (i− 1, VSCCi(C) ∪ C).
Parties of the protocol send messages regarding execution of a contract instance to the ideal functionality

F L̂(∆)

ch (i − 1, VSCCi(C) ∪ C) (i) during the protocol “Update a contract instance in a virtual state channel”
(more specifically in the procedure Registeri), (ii) during the protocol “Execute a contract instance in a
virtual state channel” and (iii) during the protocol “Close virtual state channel”. Since Z ∈ Eres , we know
that none these protocols is ever called for a state channel that does not exists. This in particular implies that
the contract instance that is being executed by parties of the protocol in the underlying subchannels must
have been constructed and could not have been closed yet. In other words, we know that α.cspace(cidA) 6= ⊥
and β.cspace(cidB) 6= ⊥, where cidA := γ.Alice||γ.id, α := ΓA(γ.subchan(γ.Alice)) and cidB := γ.Bob||γ.id,
β := ΓB(γ.subchan(γ.Bob)), where ΓA and ΓB are the channel spaces of γ.Alice and γ.Bob, respectively.

In order to complete the proof that Π(i, C) protocol Eres -emulates the ideal functionality F L̂(∆)

ch (i, C) in

F L̂(∆)

ch (i− 1, VSCCi(C) ∪ C)-hybrid world for any set of contract codes C, we need for every adversary Adv to
construct a simulator Simi that simulates the hybrid world for any environment Z ∈ Eres .

The simulator Simi constructed in this section maintains a channel space ΓT and auxiliary channel space
ΓTaux for every honest party T ∈ P and Γ for the hybrid ideal functionality F L̂(∆)

ch (i − 1, VSCCi(C) ∪ C). In
addition, the simulator generates a key pair (pkT , skT )←$KGen(1λ) for every honest party T during the
setup phase which allows Simi to internally run a copy of the hybrid world. Recall that there are no private
inputs or messages being sent, thus we assume that the ideal functionality F L̂(∆)

ch (i, C) upon receiving a
message m from party P immediately sends the message (P,m) to the simulator Simi.

We discuss in detail the most interesting case, when the ideal functionality F L̂(∆)

ch (i, C) sends message
about a virtual state channel of length exactly i or when a corrupt party P is instructed by the environment
to update or execute a subchannel of a virtual state channel of length exactly i, where the other user of the
subchannel is not corrupt. The simulation in the remaining cases is straightforward. Let us describe it here
only briefly.

If the ideal functionality F L̂(∆)

ch (i, C) sends a message about a state channel of length j, where 1 ≤ j < i, the

simulator internally executes the hybrid ideal functionality F L̂(∆)

ch (i−1, VSCCi(C)∪C) on the received message
and sends the result to the adversary Adv (recall that honest parties in the protocol Π(i, C) act like dummy

parties and only forward messages to the hybrid ideal functionality F L̂(∆)

ch (i−1, VSCCi(C)∪C)). If the corrupt

parties are instructed to send valid replies to the hybrid ideal functionality F L̂(∆)

ch (i − 1, VSCCi(C) ∪ C), the

simulator Simi sends the messages to the ideal functionality F L̂(∆)

ch (i, C) on their behalf and further instructs
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the ideal functionality F L̂(∆)

ch (i, C) as the simulator Simj would do. Thus specially, if all parties of a state
channel are honest, then the simulator Simi is defined exactly as the simulator Simj . Let us give one example
on how the simulator is defined in case there are corrupt parties.

Let us consider the situation when γ.Alice and γ.Ingrid are honest, γ.Bob is corrupt and the ideal func-
tionality F L̂(∆)

ch (i, C) sends the messages (γ.Alice, create, γ) and (γ.Ingrid, create, γ), where 1 < γ.length < i,
in round τ0. Then the simulator waits until round τ0 + 3 if the corrupt party γ.Bob is instructed to send
(create, γ) to the hybrid ideal functionality F L̂(∆)

ch (i−1, VSCCi(C)∪C). In that case, Simi forwards the message

to the ideal functionality F L̂(∆)

ch (i, C) on behalf of γ.Bob, adds the new virtual state channel γ to the channel
spaces ΓA and Γ . The simulator then waits until round γ.validity.

The simulator Simi is defined similarly in the remaining case when it does not receive any message from
the ideal functionality F L̂(∆)

ch (i, C) but a corrupt party is instructed to send a message to the hybrid ideal

functionality F L̂(∆)

ch (i− 1, VSCCi(C) ∪ C) about a state channel of length 1 ≤ j < i. This happens if a corrupt
party is the initiator of execute or update procedure or when all parties of the state channel are corrupt. In
this situation, the simulator Simi internally executes the hybrid ideal functionality F L̂(∆)

ch (i−1, VSCCi(C)∪C).
In case the message satisfies the restrictions on the environment, Simi forwards it to the ideal functionality
F L̂(∆)

ch (i, C) on behalf of the corrupt party and further instructs the ideal functionality F L̂(∆)

ch (i, C) as the
simulator Simj would do.

From now on, we will focus on the simulator Simi for the most challenging case when at least one party
of a virtual state channel of length exactly i is honest. We begin with the definition of the simulator for
virtual state channel creation. Then, similarly as for the ledger state channels, we separately define a sub-
simulator SimRegisteri which can be called as a procedure by the simulator Simi. The description of the
simulator Simi for the contract instance update in a virtual state channel of length i will be very similar to
the simulator Sim1. Therefore, we refer the reader to the described in Appx. E and discuss here only the
main differences. Firstly, the simulator Simi internally calls the subsimulator SimRegisteri instead of the
subsimulator SimRegister and secondly, in case the initiating party P is corrupt the simulator Simi also
checks if there is no other contract instance cid ′ already created in the virtual state channel (recall that
we allow only one contract instance to be opened in each virtual state channel). The simulator Simi for the
execution of a contract instance in case both end-users of the virtual state channel are honest is defined
exactly as the simulator Sim1, see Appx. E. The remaining cases are formally described below. We finalize
the definition of the simulator Simi by defining its behavior in time γ.validity, where γ is a virtual state
channel of length i whose creation environment requested earlier.

Simulator Simi: Create a virtual state channel

We use the abbreviated notation from Sec. 4.1 and Sec. 6.1. We denote the ideal functionality Fch(i) :=

F L̂(∆)

ch (i, C) and Fch(i− 1) := F L̂(∆)

ch (i− 1, C).

Case A, I,B are honest

Upon receiving (A, create, γ)
τ0←−↩ Fch(i), (B, create, γ)

τ0←−↩ Fch(i) and (I, create, γ)
τ0←−↩ Fch(i) proceed

as follows:

1. Set idA := γ.subchan(γ.id), cidA := A||γ.id and idB := γ.subchan(B), cidB := B||γ.id. Compute
σ̃A := InitCi (A, τ0, γ) and σ̃B = InitCi (B, τ0, γ).

2. For both T ∈ {A,B}, internally simulate Fch(i− 1) upon receiving the message (update, idT , cidT ,

σ̃T , VSCCi(C))
τ0←−↩ T .

3. For both T ∈ {A,B} internally simulate Fch(i− 1) upon receiving the message (update–reply, ok ,

idT , cidT )
τ0+1←−−−↩ I.

4. Set ΓA(γ.id) := γ, ΓB(γ.id) := γ and wait until round γ.validity.
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Case A,B are honest and I is corrupt:

Upon receiving (A, create, γ)
τ0←−↩ Fch(i) and (B, create, γ)

τ0←−↩ Fch(i) proceed as follows:
1. Set idA := γ.subchan(γ.id), cidA := A||γ.id and idB := γ.subchan(B), cidB := B||γ.id. Compute
σ̃A := InitCi (A, τ0, γ) and σ̃B = InitCi (B, τ0, γ).

2. For both T ∈ {A,B}, internally simulate Fch(i− 1) upon receiving the message (update, idT , cidT ,

σ̃T , VSCCi(C))
τ0←−↩ T and forward the result to I.

3. If (update–reply, ok , idT , cidT )
τ0+1←−−−↩ I for T ∈ {A,B}, then internally simulate Fch(i − 1) upon

receiving this message and forward the result to I.

4. If in round τ0 + 1, party I confirms both updates, then send (create, γ)
τ0+1
↪−−−→ Fch(i) on behalf of

I, set ΓA(γ.id) := γ, ΓB(γ.id) := γ
5. Wait until round γ.validity.

Simulator Simi: Create a virtual state channel

Case A, I are honest and B is corrupt:

Upon (A, create, γ)
τ0←−↩ Fch(i) and (I, create, γ)

τ0←−↩ Fch(i), proceed as follows:
1. Set idA := γ.subchan(γ.id), cidA := A||γ.id and idB := γ.subchan(B), cidB := B||γ.id. Compute
σ̃A := InitCi (A, τ0, γ) and σ̃B = InitCi (B, τ0, γ).

2. In round τ0, internally simulate Fch(i− 1) upon receiving (update, idA, cidA, σ̃A, VSCCi(C))
τ0←−↩ A.

3. If (update, idB , cidB , σ̃B , VSCCi(C))
τ0←−↩ B, then internally simulate Fch(i − 1) upon receiving this

message. Else stop.
4. For both T ∈ {A,B} internally simulate Fch(i− 1) upon receiving the message (update–reply, ok ,

idT , cidT )
τ0+1←−−−↩ I and forward the result of updating idB to B.

5. Send (create–ok, γ)
τ0+3
↪−−−→ B on behalf of A.

6. If (create–ok, γ)
τ0+2←−−−↩ B, then send (create, γ)

τ0+3
↪−−−→ Fch(i) on behalf of B, add γ to ΓA.

7. Wait until round γ.validity.

Case I,B are honest and A is corrupt:

Analogous to the case when only B is corrupt.

Case I,B are corrupt and A is honest:

Upon receiving (A, create, γ)
τ0←−↩ Fch(i) proceed as follows:

1. Set idA := γ.subchan(γ.id), cidA := A||γ.id and idB := γ.subchan(B), cidB 6= B||γ.id. Compute
σ̃A := InitCi (A, τ0, γ).

2. In round τ0, internally simulate Fch(i − 1) upon receiving (update, idA, cidA, σ̃A, VSCCi(C))
τ0←−↩ A

and forward the result to I.

3. If (update–reply, ok , idA, cidA)
τ0+1←−−−↩ I, then internally simulate Fch(i − 1) upon receiving this

message, send (create, γ)
τ0+1
↪−−−→ Fch(i) on behalf of I and send (create–ok, γ)

τ0+3
↪−−−→ B on behalf of

A.

4. If (create–ok, γ)
τ0+2←−−−↩ B, then send (create, γ)

τ0+3
↪−−−→ Fch(i) on behalf of B and add γ to ΓA.

5. Wait until round γ.validity.
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Case A, I are corrupt and B is honest:

Analogous to the case when only A is honest.

Case A,B are corrupt and I is honest:

Upon receiving (I, create, γ)
τ0←−↩ Fch(i) proceed as follows:

1. Set idA := γ.subchan(γ.id), cidA := A||γ.id and idB := γ.subchan(B), cidB 6= B||γ.id. Compute
σ̃A := InitCi (A, τ0, γ) and σ̃B := InitCi (B, τ0, γ).

2. If (update, idA, cidA, σ̃A, VSCCi(C))
τ0←−↩ A and in the same round (update, idB , cidB , σ̃B , VSCCi(C))

τ0←−↩ B, then proceed. Else stop.
3. For both T ∈ {A,B}, internally simulate Fch(i− 1) upon receiving the message (update, idT , cidT ,

σ̃T , VSCCi(C))
τ0←−↩ T .

4. For both T ∈ {A,B} internally simulate Fch(i− 1) upon receiving the message (update–reply, ok ,

idT , cidT )
τ0+1←−−−↩ I and forward the result to T .

5. Wait until round γ.validity.

Subsimulator: SimRegisteri(P, id , cid)

We use the abbreviated notation from Sec. 4.1 and Sec. 6.1. In addition, let TERsub := TimeExe
Req(di/2e), TEsub := TimeExe(di/2e), Fch(i) := F L̂(∆)

ch (i, C) and Fch(i− 1) := F L̂(∆)

ch (i− 1, C).

All parties are honest:

1. Let γ := ΓP (id), idP := γ.subchan(P ), cidP := P ||γ.id, idQ := γ.subchan(Q), cidQ := Q||γP .id,
νP := γ.cspace(cid), νQ := ΓQ(id).cspace(cid) and let τ0 be the current round. Denote ν̃ := νP if
νP .version ≥ νQ.version and ν̃ := νQ otherwise.

2. In round τ0, internally simulate Fch(i−1) upon receiving (execute, idP , cidP , RegisterInstance
C
i ,

(cid , νP ))
τ0←−↩ P .

3. In round τ1 ≤ τ0 + 4, internally simulate Fch(i − 1) upon receiving (execute, idQ, cidQ, Register

InstanceCi , (cid , νP ))
τ1←−↩ I.

4. In round τ2 ≤ τ1 + 4, mark (id , cid) as registered in ΓQaux , update the channels space ΓQ := Update

ChanSpace∗(ΓQ, id , cid , ν̃). Then internally simulate Fch(i− 1) upon receiving (execute, idQ, cidQ,

RegisterInstanceCi , (cid , νQ))
τ2←−↩ Q.

5. In round τ3 ≤ τ2 + 4, mark (id , cid) as registered in ΓPaux , update the channels space ΓP := Update

ChanSpace∗(ΓP , id , cid , ν̃). Then internally simulate Fch(i− 1) upon receiving (execute, idQ, cidQ,

RegisterInstanceCi , (cid , νQ))
τ3←−↩ I.

Case P, I are honest and Q is corrupt:

1. Let γ := ΓP (id), idP := γ.subchan(P ), cidP := P ||γ.id, idQ := γ.subchan(Q), cidQ := Q||γ.id,
νP := γ.cspace(cid).

2. In the current round τ0, internally simulate Fch(i−1) upon receiving (execute, idP , cidP , Register

InstanceCi , (cid , νP ))
τ0←−↩ P .

3. In round τ1 ≤ τ0 + 4, internally simulate Fch(i − 1) upon receiving (execute, idQ, cidQ, Register

InstanceCi , (cid , νP ))
τ1←−↩ I, in round τ2 ≤ τ1 + TERsub send the message (execute–requested, idQ,
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cidQ, RegisterInstance
C
i , (cid , νP )) to Q and once the internal execution is completed (before

round τ1 + TEsub), forward the result to Q.
4. In τ2 distinguish the following two cases:

– If (execute, idQ, cidQ, RegisterInstance
C
i , (cid , νQ))

τ2←−↩ Q, where VerifyInstance(id , cid ,
νQ) = 1, then
(a) Internally simulate Fch(i−1) upon receiving (execute, idQ, cidQ, RegisterInstance

C
i , (cid ,

νQ))
τ2←−↩ Q and once the internal execution is completed (before round τ2 +TEsub), forward

the result to Q.
(b) In round τ3 ≤ τ2 + TERsub , internally simulate Fch(i − 1) upon receiving (execute, idP ,

cidP , RegisterInstance
C
i , (cid , νQ))

τ3←−↩ I.
(c) Let ν̃ := νP if νP .version ≥ νQ.version and ν̃ := νQ otherwise. In round τ4 ≤ τ3 + 4,

mark (id , cid) as registered in ΓPaux and update the channel space ΓP := UpdateChan

Space∗(ΓP , id , cid , ν̃).
– Otherwise in round τ5 := τ0 + 8 + 2 · TERsub mark (id , cid) as registered in ΓPaux .

Case P,Q are honest and I is corrupt:

1. Let γ := ΓP (id), idP := γ.subchan(P ), cidP := P ||γ.id, idQ := γ.subchan(Q), cidQ := Q||γ.id.
Let νP := γ.cspace(cid) and νQ := ΓQ(id).cspace(cid) and ν̃ := νP if νP .version ≥ νQ.version and
ν̃ := νQ otherwise. Let τ0 be the current round.

2. Internally simulate Fch(i−1) upon receiving the message (execute, idP , cidP , RegisterInstance
C
i ,

(cid , νP ))
τ0←−↩ P , in round τ1 ≤ τ0 + TERsub send the message (execute–requested, idP , cidP ,

RegisterInstanceCi , (cid , νP )) to I and once the internal execution is completed (before round
τ0 + TEsub), forward the result to I.

3. If (execute, idQ, cidQ, RegisterInstance
C
i , (cid , νP ))

τ1←−↩ I, then
(a) Internally simulate Fch(i − 1) upon receiving (execute, idQ, cidQ, RegisterInstance

C
i , (cid ,

νP ))
τ1←−↩ I and once the internal execution is completed (before round τ1 + TEsub), forward the

result to I.
(b) In round τ2 ≤ τ1 + TERsub mark (id , cid) as registered in ΓQaux and update the channel space

ΓQ := UpdateChanSpace∗(ΓQ, id , cid , ν̃).
(c) In round τ2 internally simulate Fch(i−1) upon receiving (execute, idQ, cidQ, RegisterInstance

C
i ,

(cid , νQ))
τ2←−↩ Q, in round τ3 ≤ τ2 + TERsub send the message (execute–requested, idQ, cidQ,

RegisterInstanceCi , (cid , νQ)) to I and once the internal execution is completed (before round
τ2 + TEsub), forward the result to I.

(d) If (execute, idP , cidP , RegisterInstance
C
i , (cid , νQ))

τ3←−↩ I, then internally simulate Fch(i− 1)
upon receiving this message and once the internal execution is completed (before round τ3 +
TEsub), forward the result to I. In round τ4 ≤ τ0 + 3 · TEsub mark (id , cid) as registered in
ΓPaux , update the channel space ΓP := UpdateChanSpace∗(ΓP , id , cid , ν̃) and stop.

4. In round τ0 + 4 · TERsub mark (id , cid) as registered in ΓPaux and stop.

Case I,Q are honest and P is corrupt:

Upon (execute, idP , cidP , RegisterInstance
C
i , (cid , νP ))

τ0←−↩ P , such that α 6= ⊥ for α := Γ (idP ),
ν 6= ⊥ for ν := α.cspace(cidP ), ν.code = VSCCi(C), ν.storage.cspace(cid ′) = ⊥ for every cid ′ ∈ {0, 1}∗
and VerifyInstance(id , cid , νP ) = 1, proceed as follows

1. Set γ := ν.storage.virtual–channel, Q := γ.other-party(P ), idQ := γ.subchan(Q), cidQ := Q||γ.id and
νQ := ΓQ(γ.id).cspace(cid). If νP .version ≥ νQ.version, then set ν̃ := νP , otherwise let ν̃ := νQ.
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2. In round τ0, internally simulate Fch(i−1) upon receiving (execute, idP , cidP , RegisterInstance
C
i ,

(cid , νP ))
τ0←−↩ P and once the internal execution is completed (before round τ0 + TEsub), forward

the result to P .
3. In round τ1 ≤ τ0+TERsub internally simulate Fch(i−1) upon receiving (execute, idQ, cidQ, Register

InstanceCi , (cid , νP ))
τ1←−↩ I.

4. In round τ2 ≤ τ1 + 4, mark (id , cid) as registered in ΓQaux , update the channel space ΓQ := Update

ChanSpace∗(ΓQ, id , cid , ν̃) and then internally simulate Fch(i − 1) upon receiving (execute, idQ,

cidQ, RegisterInstance
C
i , (cid , νQ))

τ2←−↩ Q.
5. In round τ3 ≤ τ2 + 4, internally simulate Fch(i − 1) upon receiving (execute, idP , cidP , Register

InstanceCi , (cid , νQ))
τ3←−↩ I, in round τ4 ≤ τ3 + TERsub send the message (execute–requested, idP ,

cidP , RegisterInstance
C
i , (cid , νQ))

τ4
↪−→ P and once the internal execution is completed (before

round τ3 + TEsub), forward the result to P .

Case I is honest and P,Q are corrupt:

Upon (execute, idP , cidP , RegisterInstance
C
i , (cid , νP ))

τ0←−↩ P , such that α 6= ⊥ for α := Γ (idP ),
ν 6= ⊥ for ν := α.cspace(cidP ), ν.code = VSCCi(C), ν.storage.cspace(cid ′) = ⊥ for every cid ′ ∈ {0, 1}∗
and VerifyInstance(id , cid , νP ) = 1, proceed as follows

1. Set γ := ν.storage.virtual–channel, Q := γ.other-party(P ), idQ := γ.subchan(Q), cidQ := Q||γ.id.
2. Internally simulate Fch(i−1) upon receiving the message (execute, idP , cidP , RegisterInstance

C
i ,

(cid , νP ))
τ0←−↩ P and once the internal execution is completed (before round τ0 + TEsub), forward

the result to P .
3. In round τ1 ≤ τ0+TEsub internally simulate Fch(i−1) upon receiving (execute, idQ, cidQ, Register

InstanceCi , (cid , νP ))
τ1←−↩ I, in round τ2 ≤ τ1 + TERsub send the message (execute–requested, idQ,

cidQ, RegisterInstance
C
i , (cid , νP ))

τ2
↪−→ Q and once the internal execution is completed (before

round τ1 + TEsub), forward the result to Q.

4. If not (execute, idQ, cidQ, RegisterInstance
C
i , (cid , νQ))

τ2←−↩ Q, where VerifyInstance(id , cid ,
νQ) = 1, then set ν̃ := νP and goto step 8.

5. Internally simulate Fch(i − 1) upon receiving (execute, idQ, cidQ, RegisterInstance
C
i , (cid , νQ))

τ2←−↩ Q and once the internal execution is completed (before round τ2 + TEsub), forward the result
to Q.

6. In round τ3 := τ2 + TERsub , internally simulate Fch(i − 1) upon receiving (execute, idP , cidP ,

RegisterInstanceCi , (cid , νQ))
τ3←−↩ I, in round τ4 ≤ τ3 + TERsub send the message (execute–

requested, idP , cidP , RegisterInstance
C
i , (cid , νQ))

τ4
↪−→ P and once the internal execution is com-

pleted (before round τ3 + TEsub), forward the result to P .
7. Let ν̃ := νP if νP .version ≥ νQ.version and ν̃ := νQ otherwise.

8. Let τ5 be the current round. Send (update, id , cid , ν̃.storage, ν̃.code)
τ5
↪−→ Fch(i) on behalf of P and

(update–reply, ok , id , cid)
τ5+1
↪−−−→ Fch(i) on behalf of Q.

Subsimulator: SimRegisteri(P, id , cid)

Case Q is honest and P, I are corrupt:
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1. If (execute, idQ, cidQ, RegisterInstance
C
i , (cid , νP ))

τ0←−↩ I, such that β 6= ⊥ for β := Γ (idQ), ν 6=
⊥ for ν := β.cspace(cidQ), ν.code = VSCCi(C), ν.storage.cspace(cid ′) = ⊥ for every cid ′ ∈ {0, 1}∗
and VerifyInstance(id , cid , νP ) = 1, then proceed. Otherwise stop.

2. Set γ := ν.storage.virtual–channel, Q := γ.other-party(P ). Internally simulate Fch(i − 1) upon re-

ceiving the message (execute, idQ, cidQ, RegisterInstance
C
i , (cid , νP ))

τ0←−↩ I and once the internal
execution is completed (before round τ0 + TEsub), forward the result to I.

3. In round τ1 ≤ τ0 + TERsub let νQ := ΓQ(γ.id).cspace(cid) and set ν̃ := νP if νP .version ≥
νQ.version and ν̃ := νQ otherwise. Mark (id , cid) as registered in ΓQaux and update the channel
space ΓQ := UpdateChanSpace∗(ΓQ, id , cid , ν̃). Then internally simulate Fch(i− 1) upon receiving

(execute, idQ, cidQ, RegisterInstance
C
i , (cid , νQ))

τ1←−↩ I, in round τ2 ≤ τ1 + TERsub send the

message (execute–requested, idQ, cidQ, RegisterInstance
C
i , (cid , νQ))

τ2
↪−→ I and once the internal

execution is completed (before round τ1 + TEsub), forward the result to I.

Case P is honest and Q, I are corrupt:

1. Let γ := ΓP (id), idP := γ.subchan(P ), cidP := P ||γ.id and νP := γ.cspace(cid).
2. Internally simulate Fch(i−1) upon receiving the message (execute, idP , cidP , RegisterInstance

C
i ,

(cid , νP ))
τ0←−↩ P , in round τ1 ≤ τ0 + TERsub send the message (execute–requested, idP , cidP ,

RegisterInstanceCi , (cid , νP ))
τ1
↪−→ I and once the internal execution is completed (before round

τ0 + TEsub), forward the result to I.
3. Then distinguish the following two situations

– If (execute, idP , cidP , RegisterInstance
C
i , (cid , νQ))

τ1≤τ0+3·TERsub←−−−−−−−−−−↩ I and VerifyInstance(id ,
cid , νQ) = 1, then internally simulate Fch(i − 1) upon receiving (execute, idP , cidP , Register

InstanceCi , (cid , νQ))
τ1←−↩ I and once the internal execution is completed (before round τ1 +

TEsub), forward the result to I. Set ν̃ := νP if νP .version ≥ νQ.version and ν̃ := νQ otherwise.
In round τ2 ≤ τ1 + TERsub mark (id , cid) as registered in ΓPaux and update the channel space
ΓP := UpdateChanSpace∗(ΓP , id , cid , ν̃)

– Else, in round τ2 := τ0 + 4 · TEsub , mark (id , cid) as registered in ΓPaux and stop.

We use the abbreviated notation from Sec. 4.1 and Sec. 6.1. In addition, we define an auxiliary procedure
SimLocalExe whose formal description can be found at the end of this simulator. Let TERsub := Time
ExeReq(di/2e), TEsub := TimeExe(di/2e), Fch(i) := F L̂(∆)

ch (i, C) and Fch(i−1) := F L̂(∆)

ch (i−1, VSCCi(C)∪
C).

Case P and I are honest and Q is corrupt:

Upon (P, execute, id , cid , f, z)
τ0←−↩ Fch , let γP := ΓP (id), νP := γP .cspace(cid), σP := νP .storage and

wP := ΓPaux (id , cid).next-version. In addition, set τ1 := τ0 + x, where x is the smallest offset such that
τ1 = 1 mod 4 if P = γP .Alice and τ1 = 3 mod 4 if P = γP .Bob. Wait until round τ1 and then proceed
as follows:
1. If (id , cid) is not marked as corrupt in ΓPaux , do:

(a) Set (σ̃, addL, addR,m) := f(σP , P, τ0, z). If m = ⊥, then stop. Else compute sP := SignskP (id ,

cid , σ̃, νP .code, wP ) and send (peaceful–request, id , cid , f, z, sP , τ0)
τ1+1
↪−−−→ Q and instruct the

ideal functionality Fch(i) to output the execute requested message.

(b) If (peaceful–confirm, id , cid , f, z, sQ)
τ1+1←−−−↩ Q such that VfypkQ(id , cid , σ̃, νP .code, wP ; sQ) =

1, then set ΓPaux (id , cid).next-version := wP + 1 and ΓP := UpdateChanSpace(ΓP , id , cid , σ̃,
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νP .code, addL, addR, w
P , {sP , sQ}) and instruct the ideal functionality to output the result

and stop. Else mark (id , cid) as corrupt in ΓPaux and goto step 2.
2. Let τ3 be the current round (τ3 ≤ τ0 + 5), let idP := γP .subchan(P ), cidP := P ||id, sn :=

SignskP (cid , P, τ0, f, z) and pn := (P, τ0, f, z, sn). Then internally simulate Fch(i − 1) upon re-

ceiving (execute, idP , cidP , ExecuteInstance
C
i , (cid , pn))

τ3←−↩ P and add (f, P, z, τ0) to the set
ΓPaux (id , cid).toExecute. If (id , cid) is not marked as registered in ΓPaux , then run in parallel the
subprocedure SimRegisteri(P, id , cid).

3. In round τ4 ≤ τ3 + 4 internally simulate Fch(i − 1) upon receiving the message (execute, idQ,

cidQ, ExecuteInstance
C
i , (cid , pn))

τ4←−↩ I, in round τ5 ≤ τ4 + TERsub send the message (execute–

requested, idQ, cidQ, ExecuteInstance
C
i , (cid , pn))

τ5
↪−→ Q and instruct the ideal functionality Fch(i)

to output the execution requested message. Once the internal execution is completed (before round
τ4 + TEsub) forward the result to Q.

4. Wait until round τ5 := τ0 + 4 · TERsub + 5. In order to prevent double execution, first check if
ΓP (id).cspace(cid).storage = σ̃. If this is the case (i.e. Q registered the contract instance version
after execution), then delete (f, P, z, τ0) from Γaux (id , cid).toExecute and instruct the ideal func-
tionality Fch(i) to output the result. Otherwise execute P.SimLocalExe(τ5, id , cid , τ0).

Case P honest and I and Q are corrupt:

Upon (P, execute, id , cid , f, z)
τ0←−↩ Fch , make the same initialization as in the case when P and I are

honest.
1. Same as in the case when P and I are honest.
2. Let τ3 be the current round (τ3 ≤ τ0 + 5), let idP := γP .subchan(P ), cidP := P ||id, sn :=

SignskP (cid , P, τ0, f, z) and pn := (P, τ0, f, z, sn). Then internally simulate Fch(i − 1) upon re-

ceiving (execute, idP , cidP , ExecuteInstance
C
i , (cid , pn))

τ3←−↩ P and add (f, P, z, τ0) to the set
ΓPaux (id , cid).toExecute. If (id , cid) is not marked as registered in ΓPaux , then run in parallel the
subprocedure SimRegisteri(P, id , cid).

3. In round τ4 ≤ τ3+TERsub send the message (execute–requested, idP , cidP , ExecuteInstance
C
i , (cid ,

pn))
τ4
↪−→ I and once the internal execution is completed (before round τ3+TEsub) forward the result

to I.
4. Same as in the case when P and I are honest.

Simulator Simi: Contract instance execution

Case Q and I are honest and P is corrupt:

Upon (peaceful–request, id , cid , f, z, sP , τ0)
τ1←−↩ P

1. Let γQ := ΓQ(id), νQ := γQ.cspace(cid), σQ := νQ.storage, wQ := ΓQaux (id , cid).next-version. If
γQ = ⊥ or P 6∈ γQ.end–users or νQ = ⊥ or f 6∈ νQ.code, then goto step 4.

2. If P = γQ.Alice and τ1 mod 4 6= 1 or if P = γ.Bob and τ1 mod 4 6= 3, then goto step 4.
3. If (id , cid) is not marked as corrupt in ΓQaux , do:

(a) Compute (σ̃, addL, addR,m) := f(σQ, P, τ0, z).
(b) If m = ⊥ or VfypkP (id , cid , σ̃, νQ.code, wQ; sP ) 6= 1, then goto step 4.

(c) Send (execute, id , cid , f, z)
τ1
↪−→ Fch(i) on behalf of P , instruct the ideal functionality Fch(i) to

set τ := τ0 and instruct the functionality to output the execution requested message.
(d) Compute the signature sQ := SignskQ(id , cid , σ̃, νQ.code, wQ), send (peaceful–confirm, id , cid ,

f, z, sQ)
τ1+1
↪−−−→ P , set ΓQaux (id , cid).next-version := wQ+1 and ΓQ := UpdateChanSpace(ΓQ, id ,
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cid , σ̃, νQ.code, addL, addR). Then instruct the ideal functionality Fch(i) to output the result
and stop.

4. Mark (id , cid) as corrupt in ΓQaux and stop.

Upon (execute, idP , cidP , ExecuteInstance, (cid , pn))
τ2←−↩ P , let α := Γ (idP ), νP := α.cspace(cidP )

and γ := νP .storage.virtual–channel. Then set Q := γ.other–party(P ), idQ := γ.subchan(Q) and cidQ :=
Q||γ.id. In addition, parse pn := (P, τ0, f, z, sn). If VfypkP (cid , P, τ0, f, z; sn) 6= 1, then stop. Otherwise
proceed as follows:

1. If (id , cid) is marked as registered, then goto step 2. Else if P request execution of cidP on function
RegisterInstanceCi with parameters (cid , νP ) such that VerifyInstance(id , cid , νP ) = 1, then
execute the subprocedure SimRegisteri(P, id , cid) and in parallel goto step 2. Otherwise stop.

2. Send (execute, γ.id, cid , f, z)
τ3
↪−→ Fch(i) on behalf of P , instruct the ideal functionality Fch(i) to set

τ := τ0. Then internally simulate Fch(i− 1) upon receiving (execute, idP , cidP , ExecuteInstance,

(cid , pn))
τ2←−↩ P and once the internal execution is completed (before round τ2 + TEsub) forward

the result to P .
3. In round τ3 ≤ τ2 + TERsub , internally simulate Fch(i − 1) upon receiving (execute, idQ, cidQ,

ExecuteInstance, (cid , pn))
τ3←−↩ I.

4. In round τ4 ≤ τ3+4, instruct the ideal functionality Fch(i) to output the execute requested message,
mark (id , cid) as corrupt in ΓQaux and add (f, P, z, τ0) to ΓQaux (id , cid).toExecute.

5. Wait until (id , cid) is marked as registered in ΓQaux and then execute Q.SimLocalExe(τ4, id , cid , τ0).

Case Q honest and P and I are corrupt:

Upon (peaceful–request, id , cid , f, z, sP , τ0)
τ1←−↩ P behave exactly as in the case when Q and I are

honest.
Upon (execute, idQ, cidQ, ExecuteInstance, (cid , pn))

τ2←−↩ I, let β := Γ (idQ), νQ := α.cspace(cidQ)
and γ := νQ.storage.virtual–channel. In addition, parse pn := (P, τ0, f, z, sn). If it holds that VfypkP (cid ,

P, τ0, f, z; sn) 6= 1, then stop. Otherwise proceed as follows:

1. If (id , cid) is marked as registered in ΓQaux , then goto step 2. Else wait until round τ2 + TERsub

if I requests execution of cidQ on function RegisterInstanceCi with parameters (cid , νP ), where
VerifyInstance(id , cid , νP ) = 1. If so, goto step 2. Else stop.

2. Let τ3 be the current round. Send (execute, γ.id, cid , f, z)
τ3
↪−→ Fch(i) on behalf of P and instruct

Fch(i) to set τ := τ0.

3. Internally simulate Fch(i − 1) upon receiving (execute, idQ, cidQ, ExecuteInstance, (cid , pn))
τ3←−↩

I and once the internal execution is completed (before round τ3 + TEsub) forward the result to I.
4. In round τ4 ≤ τ3 + TERsub , instruct the ideal functionality Fch(i) to output the execute requested

message, mark (id , cid) as corrupt in ΓQaux and add (f, P, z, τ0) to ΓQaux (id , cid).toExecute.
5. Wait until (id , cid) is marked as registered in ΓQaux and then execute Q.SimLocalExe(τ4, id , cid , τ0).

Case P and Q are corrupt and I is honest:

Internally simulate the communication of the corrupt parties. If P starting the registration procedure
for id , cid , then execute the sub-simulator SimRegister(P, id , cid) for the case when both P and Q
are corrupt and I is honest. Note that if the registration procedure is successful (a contract instance
gets registered), the subsimulator SimRegisteri instructs the ideal functionality to update the contract

instance accordingly. Upon (execute, idP , cidP , ExecuteInstance, (cid , pn))
τ2←−↩ P proceed as follows:
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1. Let α := Γ (idP ), νP := α.cspace(cidP ), γ := νP .storage.virtual–channel, Q := γ.other–party(P ),
idQ := γ.subchan(Q) and cidQ := Q||γ.id. In addition, parse pn := (P, τ0, f, z, sn). If VfypkP (cid , P,

τ0, f, z; sn) 6= 1, then stop. If cid was never registered before and P did not request execution of cidP
on function RegisterInstanceCi with parameters (cid , νP ), where VerifyInstance(id , cid , νP ) =
1, then stop. Otherwise proceed as follows.

2. Send (execute, id , cid , f, z)
τ2
↪−→ Fch(i) on behalf of P , instruct the ideal functionality Fch(i) to set

τ := τ0. Then internally simulate Fch(i− 1) upon receiving (execute, idP , cidP , ExecuteInstance,

(cid , pn))
τ2←−↩ P and once the internal execution is completed (before round τ2 + TEsub) forward

the result to P .
3. In round τ3 ≤ τ2 + TERsub , internally simulate Fch(i − 1) upon receiving (execute, idQ, cidQ,

ExecuteInstance, (cid , pn))
τ3←−↩ I, in round τ4 ≤ τ3+TERsub send the message (execute–requested,

idQ, cidQ, ExecuteInstance
C
i , (cid , pn))

τ4
↪−→ Q and once the internal execution is completed (before

round τ4 + TEsub) forward the result to Q. Instruct the ideal functionality Fch(i) to output the
execute requested message.

4. Wait until the registration procedure is completed and then instruct the ideal functionality Fch(i)
to output the result of execution.

Auxiliary procedure: T.SimLocalExe(τ, id , cid , τ0)

1. Let γ := ΓT (id) and σ(0) := γ.cspace(cid).storage.
2. Let E ⊆ ΓTaux (id , cid).toExecute consist of all tuples (f ′, T ′, z′, τ ′0), where τ ′0 ≤ τ0.

– If T (i) 6= T (j) , then T (i) = A and T (j) = B.
– If T (i) = T (j), then either fi <C fj , where <C is total ordering of the contract functions defined

by the contract code C, or fi = fj and z
(i)
n ≤lex z

(j)
n , where ≤lex is the lexicographic ordering of

binary strings.
3. For k = 1 to `

(a) Compute (σ(k), add
(k)
L , add

(k)
R ,m(k)) := f(σ(k−1), T (k), τ

(k)
0 , z(k)).

(b) Instruct the ideal functionality Fch(i) to execute and output the result of execution of e(k).

(c) Set ΓT := UpdateChanSpace(ΓT , id , cid , σ(k), C, add
(k)
L , add

(k)
R ), where C := γ.cspace(cid).code.

(d) Delete e(k) from ΓTaux (id , cid).toExecute.

Simulator Simi: Closing a virtual state channel

We use the abbreviated notation from Sec. 4.1 and Sec. 6.1. Let TERsub := TimeExeReq(di/2e),
TEsub := TimeExe(di/2e), Fch(i) := F L̂(∆)

ch (i, C) and Fch(i− 1) := F L̂(∆)

ch (i− 1, VSCCi(C) ∪ C).

Case A,B, I are honest

Let γ the virtual state channel to be closed. In round γ.validity proceed as follows for both T ∈ {A,B}.

1. Set id := γ.id, idT := γ.subchan(γ.id), cidT := T ||γ.id.
2. If there is cid such that ΓT (id).cspace(cid) 6= ⊥ and (id , cid) is not marked as registered in ΓTaux ,

then run SimRegisteri(T, id , cid).
3. In round γ.validity + TERsub + TEsub , internally simulate Fch(i− 1) upon receiving (execute, idT ,

cidT , Close
C
i , ∅)←−↩ T .

4. After the internal execution, set ΓT (id) := ⊥.

Case A,B are honest and I is corrupt
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In round γ.validity for both T ∈ {A,B} proceed as follows.

1. Set id := γ.id, idT := γ.subchan(T ), cidT := T ||id.
2. If ΓT (id) = ⊥ and Γ (idT ).cspace(cidT ) = ⊥, then stop.
3. If ΓT (id) = ⊥ but Γ (idT ).cspace(cidT ) 6= ⊥, then goto step 5.
4. If ΓT (id) 6= ⊥ and there is cid such that ΓT (id).cspace(cid) 6= ⊥ and (id , cid) is not marked as

registered in ΓTaux , then run the subsimulator SimRegisteri(T, id , cid).
5. In τ1 := γ.validity+TERsub +TEsub , internally simulate Fch(i−1) on receiving (execute, idT , cidT ,

CloseCi , ∅)
τ1←−↩ T and in round τ2 ≤ τ1 + TERsub send the message (execute–requested, idT , cidT ,

CloseCi , ∅)
τ2
↪−→ I. Once the internal execution is completed (before round τ1 + TEsub), forward the

result to I and set ΓT (id) := ⊥.

Case A, I are honest and B is corrupt

In round γ.validity, set id := γ.id, idA := γ.subchan(A), cidA := A||id, idB := γ.subchan(B), cidB :=
B||id. Then proceed as follows.

1. If ΓA(id) = ⊥, then stop.
2. If ΓA(id) 6= ⊥, and there is cid such that ΓA(id).cspace(cid) 6= ⊥ and (id , cid) is not marked as

registered in ΓAaux , then run the subsimulator SimRegisteri(A, id , cid).
3. In round τ1 := γ.validity+TERsub+TEsub , internally simulate Fch(i−1) upon receiving (execute, idA,

cidA, Close
C
i , ∅)

τ1←−↩ A. After the internal execution is completed, set ΓA(γ.id) := ⊥.

4. If (execute, idB , cidB , Close
C
i , ∅)

τ1←−↩ B, then internally simulate the functionality Fch(i− 1) upon
receiving this message and after the internal execution is completed (before round τ1 + TEsub),
forward the result to B.

5. Otherwise (i.e. if B does not initiate the execution of cidB in round τ1), then in round τ2 := τ1 +
TEsub internally simulate the functionality Fch(i−1) upon receiving (execute, idB , cidB , Close

C
i , ∅)

τ2←−↩ I, in round τ3 := τ2 + TERsub send the message (execute–requested, idB , cidB , Close
C
i , ∅)

τ3
↪−→

B and once the internal execution is completed (before round τ2 + TEsub), forward the result to B.

Case B, I are honest and A is corrupt

Analogous to the previous case.

Case A is honest and I,B are corrupt

In round γ.validity, set Set id := γ.id, idA := γ.subchan(A), cidA := A||id and then proceed as follows.

1. If ΓA(id) = ⊥ and Γ (idA).cspace(cidA) = ⊥, then stop.
2. If ΓA(id) = ⊥ but Γ (idA).cspace(cidA) 6= ⊥, then goto step 4.
3. If ΓA(id) 6= ⊥, and there is cid such that ΓA(id).cspace(cid) 6= ⊥ and (id , cid) is not marked as

registered in ΓAaux , then run the subsimulator SimRegisteri(A, id , cid).
4. In round τ1 := γ.validity+TERsub+TEsub , internally simulate Fch(i−1) upon receiving (execute, idA,

cidA, Close
C
i , ∅)

τ1←−↩ A and in round τ2 ≤ τ1 + TERsub send the message (execute–requested, idA,

cidA, Close
C
i , ∅)

τ2
↪−→ I. Once the internal execution is completed (before round τ1 +TEsub), forward

the result to I and set ΓA(id) := ⊥.

Case B is honest and I, A are corrupt

Analogous to the previous case.

66


