
!1

© 2017 OPEN. All rights reserved.

OPEN PLATFORM

 WHITEPAPER

OPEN

!2

Abstract 3

Introduction 4

Decentralized Approach 	 	 	 	 	 	 	 7

Architectural Design Approach 9

Key Terms 11

OPEN API Architecture 13

Applications of Scaffolds and OPEN States 17

Developer Wallet and OPENToken 18

Third Party Dependencies 20

Security Considerations 23

Open Future Functionality 27

Next Steps 28

Table Of Contents

Abstract
OPEN: Decentralized Payment and Application Platform

 
This paper presents OPEN, a system of technologies designed to facilitate mainstream adoption of
blockchains by creating a unique platform that makes it easy for developers to integrate decentralized
technologies. The OPEN platform comprises of several key components: Scaffolds, Scaffold Creators,
and OPEN_States. These core technologies operate together within the OPEN platform to create a
comprehensive approach to decentralized payment schemes for any developer application or software
service. OPEN’s infrastructure incorporates user states tied to pricing schemes and application attributes
that can be ported to any smart contract enabled blockchain. Enabling a comprehensive decentralized
application platform for any payment formats.
 
Furthermore, this paper describes the various security risks and mitigations for the OPEN platform with
regards to both the on-chain and the off-chain interactions that a developer might encounter in various
use cases. The OPEN platform and API work together to provide a full turn key solution for developers
looking to leverage the power of blockchain technology into their current technology stack. Along with
the capability of adding any custom app based pricing scheme, while minimizing exposure to price
volatility, and the ability to validate user states on the network in relation to payment status. OPEN
enables developers to implement any payment scheme pegged to any currency of their choice. One of
the largest barriers to adoption of cryptocurrencies by developers has been the incredible price volatility
cryptocurrencies exhibit, the OPEN architecture is designed such that the developer’s exposure to
volatility is greatly minimized.

The architecture presented in this paper introduces a novel decentralized application payment gateway
that integrates seamlessly with existing application backends. Additionally, OPEN’s architecture
publishes proofs of valid transactions that hold information surrounding the transaction, enabling
limitless application level use cases. A core impediment to large scale adoption of blockchain platforms
is their inability to make it easy for anyone to integrate. Many requisite an understanding of blockchain
technology on the assumption that people will learn. This assumption has not held. Even among the
most technical of users, there is little incentive to learn the skills required to incorporate or interact with
blockchain technologies. The OPEN team recognizes this inherent problem and leverages years of
development experience to eliminate the pain points that are preventing blockchain projects from
revolutionizing our society. The OPEN team believes that creating interoperability between platforms,
building tools to assist developer engagement, and increasing user adoption benefits everyone.  

!3

Introduction

Blockchain technologies can provide incredible benefits to application developers. Technical limitations
exist in providing decentralized solutions for required core aspects of how applications function in a
conventional setting. Presently, there exists no easy solution for application developers to integrate
blockchain technologies into their core infrastructure. Infrastructure to accommodate an application’s
specific pricing scheme and the ability to determine which users on a decentralized platform have met
conditions of a specific pricing scheme, i.e paid or have enough in application currency, are lacking.
Specifically, developers require a way in which they can integrate a decentralized payment gateway into
their application’s custom payment scheme that is able to accept any cryptocurrency and synchronize
such transactions with their existing backend.  
 
Moreover, centralized systems display incredibly inefficiencies that can easily be eliminated by
incorporating aspects of a decentralized stack. Consider an example when using a centralized system to
host or operate an application. Often times developers must go through a long auditing process by a
centralized figure in which every single application update is scrutinized, often resulting in long
backlogs for developers to publish their latest update containing a more efficient data structure or pricing
model. Further issues with payment verification gateways exist as the current flow of in-app purchases
go through countless processes and third-parties, adding unnecessary time and cost until reaching the
developer’s account. OPEN provides a solution to this problem by utilizing systems of sophisticated
smart contracts as transaction and verification tools for software applications. Not only do payments
come faster, they come at lower transaction costs with the added benefits of a trustless environment. This
enables unique benefits for the application developer and it’s users.

!4

Current Payment Infrastructure

�  

The grey area represents transactions occurring over the internet, while the solid-bordered area represents a private financial
network. Solid arrows represent real time transactions, while dashed arrows are not.

As can be seen in the diagram above, the current in-app payment process requires numerous steps and a
significant amount of infrastructure. This process often costs the developer upwards of 30% in fees if the
application in question is a mobile app utilizing a traditional app store. These transactions can take 30-60
days before the remaining funds are settled and accessible by the developer. Furthermore, geolocation
boundaries and regulations imposed by hosting platforms in order to drive their own profits, limits an
application’s success and the user’s experience. Blockchain technology allows for this process to be
significantly streamlined and democratized, thus allowing for substantial time and monetary savings.

 

!5

OPEN Enabled Infrastructure

 
The diagram above shows the OPEN platform interacting on the blockchain to form a decentralized
payment verification gateway that can accommodate the flexibility of numerous pricing schemas
required by any conventional or unconventional applications. Further enabling a decentralized stacked
solution that securely connects user payments to a centralized database, which is often required for
application architecture in accepting cryptocurrency based payments. This architecture leverages
blockchain for things it excels at: being an immutable data anchor, while utilizing existing centralized
infrastructure to handle other application requirements, such as data storage and scalable computational
power. It is not currently necessary, efficient, or realistic to decentralize everything within this stack and
as a result OPEN has created a modular solution that can be easily integrated into existing applications,
enabling many traditional applications to utilize blockchain architecture. OPEN creates a needed
developer payment gateway solution that is fully self-contained and simple to implement on pre-existing
infrastructure. Switching from a centralized to a decentralized payment gateway through this method can
be as easy as using a function call, providing unique benefits that can be acquired with minimal
integration resources.  

!6

Decentralized Approach

By leveraging the power of decentralization, it is possible to create a reliable ecosystem that enables any
application developer to deploy customized payment schemes across a decentralized network and accept
cryptocurrencies as the method of payment. Further enabling the reliability of information, eliminating
single points of failure, and ensuring a level of data integrity that is impossible to replicate in centralized
application architectures. By allowing developers to anchor their existing centralized database to the
blockchain, OPEN provides the ability for any software developer to plug into blockchain technologies
without drastically altering their existing backend processes. Also enabling developers to deploy pre-
existing successful applications immediately onto a blockchain where the OPEN infrastructure provides
a turnkey framework a developer and application would need in place. This furthers the possibility of an
unprecedented level of interoperability and an entire ecosystem that enables developers to build a
plethora of digital products without a coercive intermediary charging significant fees and enforcing
limiting restrictions.

OPEN has created a blockchain agnostic platform with a comprehensive API structured to specifically
create ease of access and integration into pre-existing application infrastructure. The OPEN API
abstracts away the complexities of the OPEN platform’s decentralized architecture by introducing an
application layer across a decentralized platform developers can connect to with their existing
codebases. This makes it easy for a developer to switch out centralized functions, like a payment
gateway or a hosting environment, for functions that utilize OPEN’s decentralized application platform.
At the moment, the functionality that OPEN seeks to provide with its platform and API primarily deals
with payment gateways. The OPEN API will leverage functionalities already present in external libraries
like web3.js and ETHJS to develop a secure way to interact with the blockchain. With this
implementation, OPEN will unlock the potential within blockchain technology in order to fundamentally
alter the way applications are built, hosted, trusted and monetized.

!7

 
High level overview of the OPEN Platform model. Different layers from a smart contract compatible
blockchain to the OPEN Core where our unique Scaffold operate within. Developer services include the
acceptance of a variety of cryptocurrencies on any application payment scheme. Developer applications
utilizing the developer scaffold are on top of the developer services within the OPEN ecosystem.
Aspects of each and their interactions with applications, users and developers are discussed in more
detail below.

!8

Architectural Design Approach

Modularity is a focal point of the OPEN implementation. The decentralized backend is designed to be as
flexible as possible so that developers interact with an API that abstracts away the technical details of
utilizing the blockchain. The OPEN platform utilizes several different components of blockchain
architecture, along with a Scaffold protocol which acts as payment infrastructure and verification
scheme for a specific application, and an OPEN_State, which acts as the verified output that contains
within it the desired result of the transaction or state of any payment scheme for a user of the
application. At a high level the OPEN API serves as the connection between these components on the
blockchain and the developer’s existing infrastructure.

OPEN included Scaffolds as template smart contracts that can be created to the specifications required
by a developer, instantiated through a simple API call. OPEN utilizes customizable Scaffolds as a
component to allow developers the unique flexibility over pricing structures and types as well as
transactions required by a broad array of applications. Additionally, because OPEN establishes one point
in the architecture that the user interacts with via the OPEN API, it is simple to switch out and replace
Scaffolds as the application builds new features. A Scaffold can just as easily represent a subscription
model payment scheme, an enterprise software pricing scheme, or an in-game currency pricing scheme.
The beauty in this approach comes from the decentralized manner in which a user can pay into a
Scaffold and subsequently be verified on the blockchain using the OPEN API. Not only does this
increase the speed of transactions, it gives developers, applications and users a decentralized payment
environment by using the OPEN API to verify that a user payment is on the blockchain.

Scaffolds enable our technology to work with any blockchain that supports smart contracts. The
elegance behind Scaffolds is not only their ability to ensure a seamless workflow by responding
automatically to any user payment interaction, but also their ability to simplify the process of tweaking
an application. A Scaffold’s specific role, technical implementation, and interaction within the ecosystem
will be discussed heavily in the following pages.  
 
The OPENToken is a utility token that allows a developer to activate a Scaffold after it has been created.
By making the token’s function developer-centric, the introduction of a new token is not a barrier to
adoption by the end user. This is essential to enabling OPEN’s vision of becoming a catalyst for
blockchain adoption and integration by mainstream software developers. The developer is responsible
for purchasing OPENTokens and using them to create Scaffolds to power their applications.

This paper uses “state” to reference the specific information that gives context to a user on an
application. As an example, the “state” of a user on a mobile gaming application could encompass an
amount of in-app currency a user could have, whether or not they have a premium plan, or the assets that
they have purchased. By viewing information through this lens, it simplifies the translation of a user’s

!9

actions into data on the blockchain. Instead of representing attributes as a multitude of different tokens,
which congests the ecosystem and adds a layer of superfluous complexity, it is possible to attach data to
a transaction that uses an on-chain smart contract to simplify changing values of one of these states. In
this way, any operation a user makes in an application can be represented as a transaction on the OPEN
blockchain architecture. This maintains an efficient, linear, and most importantly, secure workflow.
Expanding a little on a potential use case above, an example of an operation is the application user
desiring an additional amount of in-app currency. Instead of representing the currency or gems as some
sort of individual token, creating an excessive amount of unique tokens, this method represent the
number of gems a user has as a variable in the state of the user. By doing so, the user can simply pay
into the Scaffold, which will publish a new state for that user onto the blockchain, signifying that indeed
the user has paid and has a right to that new amount of currency. Not only is this experience simple and
intuitive, it also protects against potentially malfeasant acts by dishonest users.  

The OPEN API gives developers the ability to create customized Scaffolds from Scaffold templates that
can correspond to a variety of payment schemes. The OPEN API call is the initial point of interaction for
a developer to create a Scaffold that conforms to the developer or application specific requirements.
Having a high level interaction scheme makes it easy for developers to change or update certain aspects
of their application. They can simply close-out their original Scaffold and make a new Scaffold with
updated specifications through a simple and familiar API call. The significance of this system is that it
enables developers to change their application scheme and through the OPEN API without having to
redeploy the entire payment structure.

!10

Key Terms
 
OPENWallet:
An OPENWallet is the storage unit for the user’s cryptocurrencies (e.g. ETH, BTC, etc.) as well as the
OPEN_States the user has purchased through the OPEN API. These OPEN_States provide payment
verification for the user on different applications. The OPENWallet provides an intuitive user interface
that abstracts away having to learn how a blockchain works, and maintains the same user experience as
current centralized implementations.

Developer Wallet:
A developer wallet is the wallet (address) where the Scaffold transfers the funds that the user has sent to
it for an OPEN_State (see diagram below). While OPEN allows developers to use any wallet, it is
recommended that the developer use the OPENWallet, as it leverages the OmiseGo SDK, which has a
built-in decentralized cryptocurrency exchange and great community support. Through the OmiseGo
Wallet SDK, the developer can automatically convert any Scaffold transfer into any cryptocurrency they
desire or fiat.  

OPENToken:
An ERC20 token that will be distributed in the OPEN ICO and allows for developers to create Scaffolds
in the OPEN ecosystem. As the OPEN platform evolves the OPENToken could gain additional utility
such as giving users that pay in OPENToken a discount for the the services purchased.

OPEN_State:
A smart contract that stores a cryptographically hashed state of a user on an application
(implementations for what the OPEN_State can represent are discussed in the “Future Proofing”
section). An application’s current database state at the time of purchase can be made private using a
cryptographic hash and then anchored to the blockchain. The OPEN_State will include information to
allow for verification that the Open_State belongs to the specific user and to a Scaffold. This information
includes the user’s OpenWallet address and the Scaffold’s address.

!11

Scaffold:
A template smart contract that is created by a developer and includes application specific information,
such as the pricing scheme or number of gems owned in the network. The Scaffold is instantiated by the
developer when the developer pays into a Scaffold Creator. The Scaffold becomes active when it is
staked with enough OPENTokens. The Scaffold staking process entails tying up a certain number of
OPENTokens in the Scaffold in order for it to run. These OPENTokens are required to keep the Scaffold
active, but will be returned to the developer when they deactivate the Scaffold. The Scaffold is
responsible for creating the OPEN_States for the developers application. As such, the Scaffold needs a
specific pricing scheme for the OPEN_State (e.g. $10 for 10 gems), and it uses this pricing scheme as a
way to check if it is being paid enough. The Scaffold is also responsible for transferring the payment
given to it for the OPEN_State into the developer’s wallet. A Scaffold requires the developer’s address
for transfers, a pricing scheme, and access to a pricing oracle, but can also can hold any number of
additional variables and data.

Scaffold Creator:
The API that OPEN provides to create Scaffolds for developers through a simple API call. The Scaffold
Creator can create Scaffolds with ETH, but for the Scaffolds to become active it is necessary to stake
them with OPENTokens.  

!12

OPEN API Architecture

 

High level overview of the workflow for both developers and application users through the OPEN architecture, as well as

where the API fits in. Details on the most important interactions below.  

!13

Scaffold Creation by Developer

�
 

The OPEN API will have a built-in functionality that gives developers the ability to generate new
Scaffolds set to the developer’s address as the owner. By utilizing OPENTokens to initialize the
Scaffold, the developer can create a unique Scaffold in the blockchain ecosystem.

The second template contract is the Scaffold. As stated above, the Scaffold is created through the API
with OPENTokens. The Scaffold itself accepts a transaction that represents the payment given by the
end user, as well as some data representing the action that the user wishes to take. This is propagated by
the API. The Scaffold then creates an OPEN_State that represents the result of executing the specified
action, and stores it in a decentralized manner in order to reduce overhead faced by the developer and to
leverage the data integrity and rigor offered by blockchains. The OPEN_State is kept in a the user’s
OPENWallet to intuitively organize data and increase execution efficiency by reducing querying time.
From the user’s perspective, the user wallet could be a user interface similar to one in function enforced
by Google Play or the Apple App Store. The final aspect of the Scaffold is that once it verifies that a
payment amount is correct, it does not store any cryptocurrency, rather it automatically transfers the
funds to the developer’s wallet, allowing for instant liquidity and protection from volatility for the
application and developer. This nearly instantaneous transfer from the customer’s wallet to the
developer’s is a dramatic improvement over the current in-app payment system, which can take as long
as 30-60 days to credit purchases to a developer’s account, while mitigating volatility issues that may
occur in such period when dealing with cryptocurrencies.  

!14

User Interacts with Scaffold

�
 
This diagram shows the user sending a payment of ETH to the developer's Scaffold through the OPEN
API. Since the user's payment could be processed via the OmiseGo (OMG) decentralized exchange hub,
it is possible for the user to pay in a variety of cryptocurrencies and have that payment converted into
ETH to pay the Scaffold. A developer’s database management system can then propagate changes by
checking the OPEN_State for the user address and update the relevant state by decrypting the
information with a key given to it by the developer. Simultaneously, ETH payment will be sent from the
Scaffold to the developer wallet (which can be selected by the developer) where they can choose to
retain the amount, transfer immediately to USD, or convert to some other cryptocurrency the developer
prefers.  

!15

OPENWallet + OPENState Scheme

�

 
The OPENWallet represents a collection of a user’s different states for each application they are
involved in, these states are represented as unique smart contracts. Each state, called the OPEN_State, is
a smart contract on the Ethereum network that anchors the data on the blockchain and allows for
connections and verifications on the developer’s existing backend. This is created by feeding in data to
the Scaffold. Modularization is key to having flexibility and iterative capabilities.  

!16

Applications of Scaffolds and OPEN_States

The OPEN_States and Scaffolds that comprise the OPEN platform enable the application of countless
digital services. Below is a an example implementation for OPEN_States with regards to a video
streaming application, but other use cases include: adding in-app currencies, creating software licenses,
distributing coupons, and providing partial administrator access to databases.

Permissions for video streaming (permissions for online use):
Through the OPEN platform, any video publisher, for example Jon, who would like to monetize their
content can do so without worrying about an elaborate payment backend. In this structure, a Scaffold
would be initiated by Jon and his application to allow a user to gain access to Season 1 of a show he is
producing. He would initialize this Scaffold by inputting the cost of access to this streaming service and
a variable value indicating if the user has access.

When the user pays into this Scaffold, the amount of money he paid is validated through an oracle to see
if it matches the amount needed as specified by Jon. If it does, an OPEN_State is created that is sent to
the purchaser’s wallet, providing access to the purchaser. At this point, all Jon’s database has to do is
query the OPEN_State to see if that state exists, and if it does, edit its own database to reflect what the
OPEN_State signals (for example that the purchaser can watch Season 1). With that change made, the
purchaser has access to the videos and can view them.

The efficiency of this system is orders of magnitudes better than existing payment gateways.
Additionally, the increased efficiency results in much fewer middlemen to extract exorbitant fees that
prevent Jon from capturing the true value of his content. OPEN’s value is clear.  

!17

Developer Wallet and OPENToken

The developer’s wallet can be any online wallet that is capable of receiving cryptocurrencies and
holding OPENToken. While OPEN allows developers to use any wallet, it is recommended that they use
the OPENWallet as it leverages the OmiseGo SDK which has great community support and a built-in
decentralized exchange. The OmiseGo SDK is publicly available for use and easily implemented. It is
important to note that OPENWallet’s architecture is however generalizable over any wallet for
widespread use.

The developer’s wallet is used in three different scenarios. The first is when a developer wishes to create
a new Scaffold by paying into the Scaffold Creator. This transaction would include a staked payment in
OPENTokens along with some data and would be propagated by the OPEN API to the Scaffold Creator,
effectively abstracting away underlying blockchain technology.

The second scenario in which the developer’s wallet is used is when the developer receives payments
from the user. As mentioned above, this transaction would be sent by the Scaffold to which the user is
paying. Once the Scaffold validates that the amount paid is sufficient for the action requested, it
instantiates an OPEN_State and immediately forwards payment to the developer’s Wallet’s address.
OPEN utilizes automatic liquidation to reduce exposure to volatility. Volatility risk is important to
address in a decentralized developer ecosystem because cryptocurrencies can be extremely volatile and
the value they hold is subject to unforeseeable fluctuations. This represents an obstacle to blockchain
adoption, so in order to mitigate this, OPEN minimizes the time cryptocurrency is locked up in its
decentralized architecture. By immediately forwarding all payments to the developer’s wallet at the time
of the transaction, the developer can then choose if they would like to hold the cryptocurrency as-is, or if
they would like to convert it into another cryptocurrency or fiat. This allows for increased functionality
and flexibility for the developer.

The third scenario is when the developer’s wallet would be used is in maintaining an account of the
transactions that go through the application Scaffolds. Since transactions are public to everyone on the
blockchain, a wallet can be built with functionality to analyze all the interactions users have had with a
Scaffold, and from there provide the developer with valuable user statistics. For example, a developer
can learn how many users are interacting with Scaffolds, how frequently they interact, average
transaction size, revenue data, and more. This key functionality makes the OPEN ecosystem competitive
with current centralized app stores.  

!18

OPENToken

The OPENToken is used primarily by developers in initializing Scaffolds. At a high level, a developer
can create a Scaffold by using the OPEN API, but for that Scaffold to be used, the developer must stake
a certain amount of OPENToken with it. Upon staking their OPENToken, an oracle records the market
price of the OPENToken, and when the developer wants to retire a Scaffold, they may close it out and
receive their staked OPENTokens back.

To mitigate the rapid activation and deactivation of Scaffolds, OPENTokens that are staked in a Scaffold
will be locked-up for a specific time period. After the lock-up period, the developer is free to close-out
their Scaffold or keep the OPENTokens in the Scaffold.

Because OPENToken’s value may fluctuate during the time period the tokens are staked, the value of the
OPENToken’s held by the Scaffold may be different from the time they were first staked. The OPEN
platform handles the issue of OPENToken price volatility by implementing a slashing mechanism when
the developer closes out a Scaffold. When the value of the OPENToken has decreased or retained value
since the staking of the Scaffold, the developer receives back the same amount of OPENTokens that they
staked the Scaffold with. When the value of the OPENToken has increased since the activation of the
Scaffold, then a profit is realized by the developer. A certain percentage of the developer’s profits are
slashed and distributed evenly to the users as members of the community that have a positive
OPENToken balance. The developer receives back the original value of their OPENTokens plus the
profits that were not slashed. This feature of OPEN, the closing out and airdropping distribution to users
with a positive OPENToken balance, serves to preserve liquidity in the ecosystem and encourage
community involvement. This feature also provides incentives for developers to utilize the Scaffold and
provides a full-circle approach to the entire OPEN ecosystem. Moreover, staking tokens to Scaffolds
prevents developers from creating unnecessary Scaffolds on the OPEN system.

Additionally, the OPENToken can provide utility to the users if application Scaffolds are implemented to
give discounts or currency bonuses to individuals that hold OPENTokens in their OPENWallet, or pay
the Scaffolds in OPENTokens. This added utility would provide an incentive for users to purchase and
utilize cryptocurrencies such as ETH and BTC and carry OPENTokens over fiat currencies to support a
conventional app in a decentralized environment. Moreover, it makes sense for users to hold
OPENTokens because each time a Scaffold closes, OPENTokens will be airdropped to all wallets with a
large enough balance of OPENTokens.  

!19

Third Party Dependencies

The OPEN platform is built with interoperability and modularity so that current components can easily
be swapped as better iterations of the technology surface in the future. This modularity gives us the
necessary flexibility to be able to adapt to advances in the space, while keeping security independent of
the underlying protocol. In this way, OPEN will truly be able to create an application network or layer
appealing to the entire industry. In designing our architecture great thought was given to which 3rd party
platforms OPEN can currently best leverage. Highlighted below is a list of 3rd party dependencies that
would aid the OPEN platform, both extending the platform’s capabilities and focus.

OmiseGo White-Label Wallet SDK 

OPEN uses the OmiseGo wallet SDK to connect to the OmiseGo decentralized cryptocurrency exchange
(DEX). This provides users with the ability to pay into Scaffolds (smart contracts that act as payment
gateways) with a variety of different cryptocurrencies. Moreover, using the OmiseGo DEX, developers
can convert the ETH that they receive from the users into other cryptocurrencies or fiat.

https://omg.omise.co/

Tendermint 

While Tendermint is not necessary for the implementation of OPEN, its use comes from its high
throughput, low transaction fees, and its ability to run the Ethereum Virtual Machine (EVM) via
Ethermint. Tendermint provides the ability to replicate state machines (e.g. the EVM) on its blockchain,
which allows it to utilize smart contracts written in Solidity, making the transition from Ethereum to
Ethermint a simple operation that provides a huge increase in throughput and reduces costs. These
reduced transaction costs would translate into a lower fee structure for developers accepting payments
through OPEN, and the enhanced throughput would make it faster to process transactions on-chain. This
helps to overcome adoption and scalability issues that arise from accepting many payments at one time.
It would make sense to utilize Ethereum for the PoC, Tendermint for increased throughput to test the
OPEN platform as it scales, and eventually switch back to the Ethereum network once more of the
Ethereum scaling roadmap has been implemented. The switch back to Ethereum, once it implements
Proof-of-Stake, would be dependent on which platform provided the best transaction times and fees.

https://tendermint.com/

!20

https://omg.omise.co/
https://tendermint.com/

GNOSIS, Oraclize, ChainLink  

Since the price of cryptocurrencies is known to be volatile it makes sense to base the prices within the
Scaffolds on fiat currency. This prevents users from being upset if the prices increase and they have to
pay more to make purchases, and it prevents developers from being upset if the prices decrease and they
get less money from the same purchases. To solve for this issue of volatility, it is necessary to have a
trusted source of data for the price of various cryptocurrencies. This trusted source can use the correct,
real-time price in order to validate the user’s transaction. To do this, an oracle is needed to query the
API. There are several potential oracle networks that can be used by the OPEN API. These include the
centralized oracle from Gnosis, the oracle that is provided by Oraclize, and the oracle network provided
by ChainLink. The choice of the oracle will depend on the speed at which the oracle can get the price
data, and the security of the oracle itself. An oracle that is unable to achieve fast throughput would be a
bottleneck for the transactions and could lead to inaccurate pricing data, and an oracle that lacks data
security poses an obvious threat.

https://gnosis.pm/
http://www.oraclize.it/
https://link.smartcontract.com/#chainlink

Web3, ETHJS 

OPEN intends to use pre-existing libraries like web3 and ETHJS to interact with the Scaffold Creator,
the Scaffold, and the OPEN_State Tokens. This is done both to prevent errors that arise from rolling
your own connections, and to inspire developers to participate in the process of helping OPEN to
continue to innovate. Web3.js is a Javascript API to Ethereum and allows interactions via JSON by
providing the Scaffold and Scaffold smart contracts with JSON RPC. ETHJS is a javascript library that
is based on web3.js, but features a more light-weight implementation for interacting with Ethereum.

https://github.com/ethereum/web3.js/
https://github.com/ethjs/ethjs

!21

https://gnosis.pm/
http://www.oraclize.it/
https://link.smartcontract.com/#chainlink
https://github.com/ethereum/web3.js/
https://github.com/ethjs/ethjs

A Simple Use Case Example

�

1. Chase is a developer that wants to make a payment method for his new video streaming application so  
 that users can pay to become subscribers.

2. Chase decides to use the OPEN platform to manage his payment protocols.

3. He uses the OPEN API to send ETH to the Creator Scaffold and obtain a Scaffold for his application.

4. With the OPEN API and its user-friendly interface, Chase adds a pricing scheme that gives each user  
 the ability to gain the Subscriber state on his database for $10.

5. Then Chase uses the OPEN API to fund this Scaffold by purchasing OPENTokens and staking a  
 certain amount of them in the Scaffold.

6. When a user, Punia, decides to become a subscriber through OPEN, he creates an OPENWallet with  
 the OPEN API. Punia then sends payment through the OPENWallet, and the OPENWallet then sends  
 the payment, as well as Punia’s desire to become a subscriber, to Chase’s Scaffold.

7. The Scaffold will receive the payment and verify that Punia is paying enough money to become a  
 subscriber through an oracle.

8. If Punia’s payment is validated, then the Scaffold will create an OPEN_State instance with the  
 necessary variables, and send it to Punia’s OPENWallet.

9. The OPEN API can now let Chase’s database know that there has been an update and can provide him  
 with the ability to check the validity of the update by ensuring that it is recorded on the blockchain.

10. Chase receives the value in ETH from Punia and is able to convert it to fiat, or another  
 cryptocurrency, immediately if he is using the OPEN wallet.

11. Now Punia can view a video or sign into Chase’s application because he is a subscriber.

Note: Punia can log into Chase’s application through conventional means because his OPENWallet
represents state change requests, not identities. A single OPENWallet could have the potential to update
multiple different users by sending different hashed states.

!22

Security Considerations

The OPEN platform incorporates various off-chain components that can pose security and
implementation challenges. This section is dedicated to addressing the most pressing of these challenges
and incorporates some proposed workarounds.

Database Synchronicity  

One potential challenge for OPEN is the difficulty in determining whether the database is up to date with
the decentralized ledger of OPEN_States (that can be viewed on the Ethereum Blockchain). To solve
this issue, OPEN could force the blockchain to record every API call to the database and save it to an
OPEN_State, but this would put a limit the number of “harmless” API calls (for example obtaining a
username, or changing an email address) that applications must make on a daily basis. Therefore, it is
not feasible to keep the database and the blockchain completely synchronized to maintain a realistic in
practice solution for cost effectiveness.

Instead, OPEN has opted for a partially synchronous database. This partial synchronicity utilizes the
knowledge that every database already has permissioned API calls and database changes that they run
through a payment gateway. In this manner, it is only necessary to keep track of the number of payments
and states or actions that the user has made that are permissioned.

!23

�

 
This diagram demonstrates how an application’s database recognizes a specific user’s on-chain
OPEN_State. Normally, the OPEN API can be implemented on the application controller to check the
Scaffold for any new OPEN_States, and then propagate those changes. The application database then
monitors the blockchain for OPEN_States being instantiated from relevant Scaffolds. Upon discovery,
the database propagates the state change represented by the OPEN_State. The verifier can be one of a
multitude of implementations, but it is meant to check that the OPEN_State was indeed created by the
Scaffold of the developer and that this OPEN_State is the most recent OPEN_State that has been
created. If the OPEN_State is verified, then the application controller makes the database change.

!24

Note: For operations where a user is trying to purchase in-app currency, it is better to use the action
operation instead of the state to prevent a malicious user from using in-app currency before a transaction
is verified. Actions are explained in more detail further on.

This partial database synchronicity relies, in many ways, on a consistent and fast verification technique.
The verification technique can be done one of several ways: using an external API that checks the
Ethereum Blockchain for the OPEN_State, which can pose serious security and time issues, or
employing a full node which would require the developer to be running a full node on the Ethereum
network.

Since both of these options create issues with either security or with computational cost, it might make
sense for OPEN to host its own API to query the blockchain and check for the existence of a specific
OPEN_State.

Multiple OPEN_States  

Another potential issue for OPEN is that an OPENWallet can and should have multiple OPEN_States for
the same database, as a malicious user could request a previous OPEN_State to the database, at which
point the database might accept it without accepting payment because it exists on the blockchain.
Therefore, it is necessary for a method to verify the latest OPEN_State that the user has in a database.
While it is trivial to distinguish which OPEN_State is the youngest by checking the blockchain, this
takes a lot of time and allows for malicious users to attack the database by requesting multiple previous
OPEN_States and forcing the database to run checks on them to verify they are the most recent.

Instead, a type of history implementation is employed for the user to keep track of all of their states
through the wallet. This history could be a part of the OPEN API, on the database, or as a part of the
developer’s wallet, and would be structured as a hash chain where each new state depends on the hash of
the previous state. This history allows for quick verification of user OPEN_States, and provides safety
against DDoS attacks.
 

Multiple OPEN_States History Implementation
 

�

!25

State vs. Action in the OPEN_State 

While it is not a formal security consideration for the OPEN platform, it should be noted that the
OPEN_State could also incorporate actions as well as states in its schema. An action would differ from a
state in that an action would provide a manipulation of a current state, whereas a state would provide the
state itself. The action and state schema of the OPEN_State should be implemented for different reasons.
Included below is a set of general guidelines for using an action versus a state, as well as potential
security exploits for both.

States

The state should be reserved for permission-based applications, where a user cannot exploit the system
by changing a state before they are granted their new state.

An example of a good use case would be changing a user from being a subscriber to a non-subscriber, or
representing a set of finite states that a user can take on and cannot be spent by the user in the interim
before it is verified.

However, in some applications, the state may be exploited. An example of this exploit would be a user
who has 500 in app currencies, say gems for example, and requests a desired state of 550 gems, then
before the database makes the change the user spends all 500 gems. Since the transaction is valid and the
database should verify that the Open_State is correct and not in its history, the user will have stolen 500
gems from the application through the system. To prevent this, it is necessary to use an action.

Actions

The action should be reserved for applications where the user wants to add a specific amount of in-game
money, or there exists many game states that a user can have, and the user can spend or trade these
before the database can propagate the changes.

The potential exploit for states provides a great use case for actions. With an action, the user would
specify that they want to add 50 gems to their account. Once they pay for the transaction they are given
the ability to run this function an allotted number of times (in this case one). No matter what amount
they spend, they will not be able to steal gems. The action will be placed in the database history after it
is run, which means that there is also no exploit in regards to running an action more than its allotted
number of times.

An action can be exploited by running bad actions for the developer, so the developer needs to include
specific limitations on the arguments. The state is not as much of a problem because it codes for some
set of actions that the developer has already preprogrammed.  

!26

OPEN Future Functionality

The infrastructure within the blockchain ecosystem is constantly changing and adapting. In order for
OPEN to not only be a part of the future of blockchain, but to lead the future, OPEN has been designed
to grow as the technology around blockchain evolves. As a platform that conventional application
developers may depend on to utilize blockchain and cryptocurrencies within their applications, it’s in
OPEN’s best interest to continuously stay relevant.

The first consideration that OPEN has made for the future is building the infrastructure on Ethereum and
dealing with scalability issues and transaction fees by porting it’s system to Tendermint at a later date.
Since OPEN is written in Solidity (and eventually Viper) and runs on the Ethereum Virtual Machine
(EVM), it is possible to transition from the Ethereum network to the Tendermint managed EVM known
as Ethermint (via an ABCI). Not only will this allow OPEN to take advantage of the higher throughput
and lower transaction fees provided by Tendermint’s consensus algorithm, the transition will be
frictionless because Ethermint runs the same EVM. OPEN could even port back to Ethereum once it has
implemented the faster Proof-of-Stake consensus algorithm. By design, the OPEN platform is portable
between numerous systems and not limited to a single blockchain protocol. In the future, the growth of
OPEN may make it desirable to develop our own chain to improve upon efficiency, Scaffold features
and transaction issues.

The modularity of OPEN provides an option for developers to not only include new off-chain systems
seamlessly, it allows the OPEN community to provide safety upgrades and additions to the OPEN
platform, thereby fostering innovation on and off-chain.

A concerted effort was made to ensure that developers and owners of Scaffolds would not be limited by
the OPEN ecosystem when integrating with their pre-existing application infrastructure. Enabling
significant flexibility for developers to choose which type of database structure, wallets, and which
verification method they require. While OPEN provides developer wallets and verifiers, OPEN focuses
on creating an interconnected application layer to act as the glue between various blockchain
components. For instance, if a developer wants to use decentralized databases, it is a simple matter to
include these kinds of database interactions in OPEN.

As a nimble approach, OPEN is meant to be changed and upgraded to include new features for new
systems and its modular design allows for greater freedoms when opening the codebase up to the open-
source community. These additions to the OPEN framework could be as simple as making Scaffold
accounting easier or including a wallet verification check to increase the security within the system.

!27

Next Steps
 
OPEN will open-source all tools of it’s platform and implement a utility token to support the OPEN
platform project. The OPEN platform is developing the backbone and future infrastructure required by
software application developers to increase adoption and utility of cryptocurrencies. By pushing this
platform forward, OPEN promotes mainstream blockchain adoption by providing required tools for
applications and creating open-source tools for the community.  
 
This project leverages the incredible amount of work being done to make protocol level improvements,
while supporting the application layer that enables the use of this infrastructure by applications and their
developers

!28

