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Abstract—Chainspace is a decentralized infrastructure, known
as a distributed ledger, that supports user defined smart contracts
and executes user-supplied transactions on their objects. The
correct execution of smart contract transactions is verifiable by
all. The system is scalable, by sharding state and the execution
of transactions, and using S-BAC, a distributed commit protocol,
to guarantee consistency. Chainspace is secure against subsets of
nodes trying to compromise its integrity or availability properties
through Byzantine Fault Tolerance (BFT), and extremely high-
auditability, non-repudiation and ‘blockchain’ techniques. Even
when BFT fails, auditing mechanisms are in place to trace mali-
cious participants. We present the design, rationale, and details
of Chainspace; we argue through evaluating an implementation
of the system about its scaling and other features; we illustrate a
number of privacy-friendly smart contracts for smart metering,
polling and banking and measure their performance.

I. INTRODUCTION

Chainspace is a distributed ledger platform for high-integrity
and transparent processing of transactions within a decentral-
ized system. Unlike application specific distributed ledgers,
such as Bitcoin [Nak08] for a currency, or certificate trans-
parency [LLK13] for certificate verification, Chainspace offers
extensibility though smart contracts, like Ethereum [Woo14].
However, users expose to Chainspace enough information
about contracts and transaction semantics, to provide higher
scalability through sharding across infrastructure nodes: our
modest testbed of 60 cores achieves 350 transactions per
second, as compared with a peak rate of less than 7 trans-
actions per second for Bitcoin over 6K full nodes. Etherium
currently processes 4 transactions per second, out of theoretical
maximum of 25. Furthermore, our platform is agnostic as to
the smart contract language, or identity infrastructure, and
supports privacy features through modern zero-knowledge
techniques [BCCG16, DGFK14].

Unlike other scalable but ‘permissioned’ smart con-
tract platforms, such as Hyperledger Fabric [Cac16] or
BigchainDB [MMM+16], Chainspace aims to be an ‘open’
system: it allows anyone to author a smart contract, anyone to
provide infrastructure on which smart contract code and state
runs, and any user to access calls to smart contracts. Further,
it provides ecosystem features, by allowing composition of
smart contracts from different authors. We integrate a value

system, named CSCoin, as a system smart contract to allow
for accounting between those parties.

However, the security model of Chainspace, is different
from traditional unpermissioned blockchains, that rely on proof-
of-work and global replication of state, such as Ethereum. In
Chainspace smart contract authors designate the parts of the
infrastructure that are trusted to maintain the integrity of their
contract—and only depend on their correctness, as well as the
correctness of contract sub-calls. This provides fine grained
control of which part of the infrastructure need to be trusted on
a per-contract basis, and also allows for horizontal scalability.

This paper makes the following contributions:

• It presents Chainspace, a system that can scale arbitrar-
ily as the number of nodes increase, tolerates byzantine
failures, and can be fully and publicly audited.

• It presents a novel distributed atomic commit protocol,
called S-BAC, for sharding generic smart contract
transactions across multiple byzantine nodes, and
correctly coordinating those nodes to ensure safety,
liveness and security properties.

• It introduces a distinction between parts of the smart
contract that execute a computation, and those that
check the computation and discusses how that dis-
tinction is key to supporting privacy-friendly smart-
contracts.

• It provides a full implementation and evaluates the per-
formance of the byzantine distributed commit protocol,
S-BAC, on a real distributed set of nodes and under
varying transaction loads.

• It presents a number of key system and applica-
tion smart contracts and evaluates their performance.
The contracts for privacy-friendly smart-metering and
privacy-friendly polls illustrate and validate support
for high-integrity and high-privacy applications.

Outline: Section II presents an overview of Chainspace;
Section III presents the client-facing application interface;
Section IV presents the design of internal data structures
guaranteeing integrity, the distributed architecture, the byzantine
commit protocols, and smart contract definition and composi-
tion. Section V argues the correctness and security; specific
smart contracts and their evaluations are presented in Section VI;
Section VII presents an evaluation of the core protocols and
smart contract performance; Section VIII presents limitation
and Section IX a comparison with related work; and Section X
concludes.
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II. SYSTEM OVERVIEW

Chainspace allows applications developers to implement
distributed ledger applications by defining and calling proce-
dures of smart contracts operating on controlled objects, and
abstracts the details of how the ledger works and scales. In this
section, we first describe data model of Chainspace, followed
by an overview of the system design, its threat model and
security properties.

A. Data Model: Objects, Contracts, Transactions.

Chainspace applies aggressively the end-to-end princi-
ple [SRC84] in relying on untrusted end-user applications to
build transactions to be checked and executed. We describe
below key concepts within the Chainspace data model, that
developers need to grasp to use the system.

Objects are atoms that hold state in the Chainspace system.
We usually refer to an object through the letter o, and a set of
objects as o ∈ O. All objects have a cryptographically derived
unique identifier used to unambiguously refer to the object, that
we denote id(o). Objects also have a type, denoted as type(o),
that determines the unique identifier of the smart contract that
defines them, and a type name. In Chainspace object state is
immutable. Objects may be in two meta-states, either active or
inactive. Active objects are available to be operated on through
smart contract procedures, while inactive ones are retained for
the purposes of audit only.

Contracts are special types of objects, that contain exe-
cutable information on how other objects of types defined by
the contract may be manipulated. They define a set of initial
objects that are created when the contract is first created within
Chainspace. A contract c defines a namespace within which
types (denoted as types(c)) and a checker v for procedures
(denoted as proc(c)) are defined.

A procedure, p, defines the logic by which a number of
objects, that may be inputs or references, are processed by some
logic and local parameters and local return values (denoted
as lpar and lret), to generate a number of object outputs.
Notionally, input objects, denoted as a vector ~w, represent
state that is invalidated by the procedure; references, denoted
as ~r represent state that is only read; and outputs are objects, or
~x are created by the procedure. Some of the local parameters
or local returns may be secrets, and require confidentiality. We
denote those as spar and sret respectively.

We denote the execution of such a procedure as:

c.p(~w,~r, lpar, spar)→ ~x, lret, sret (1)

for ~w,~r, ~x ∈ O and p ∈ proc(c). We restrict the type of
all objects (inputs ~w, outputs ~x and references ~r) to have
types defined by the same contract c as the procedure p
(formally: ∀o ∈ ~w∪~x∪~r.type(o) ∈ types(c)). However, public
locals (both lpar and lret) may refer to objects that are from
different contracts through their identifiers. We further require
a procedure that outputs an non empty set of objects ~x, to
also take as parameters a non-empty set of input objects ~w.
Transactions that create no outputs are allowed to just take
locals and references ~r.

Associated with each smart contract c, we define a checker
denoted as v. Those checkers are pure functions (ie. determin-
istic, and have no side-effects), and return a Boolean value. A
checker v is defined by a contract, and takes as parameters a
procedure p, as well as inputs, outputs, references and locals.

c.v(p, ~w,~r, lpar, ~x, lret, dep)→ {true, false} (2)

Note that checkers do not take any secret local parameters
(spar or sret). A checker for a smart contract returns true only
if there exist some secret parameters spar or sret, such that
an execution of the contract procedure p, with the parameters
passed to the checker alongside spar or sret, is possible as
defined in Equation (1). The variable dep represent the context
in which the procedure is called: namely information about
other procedure executions. This supports composition, as we
discuss in detail in the next section.

We note that procedures, unlike checkers, do not have to
be pure functions, and may be randomized, keep state or have
side effects. A smart contract defines explicitly the checker c.v,
but does not have to define procedures per se. The Chainspace
system is oblivious to procedures, and relies merely on checkers.
Yet, applications may use procedures to create valid transactions.
The distinction between procedures and checkers—that do not
take secrets—is key to implementing privacy-friendly contracts.

Transactions represent the atomic application of one or
more valid procedures to active input objects, and possibly
some referenced objects, to create a number of new active
output objects. The design of Chainspace is user-centric, in
that a user client executes all the computations necessary to
determine the outputs of one or more procedures forming a
transaction, and provides enough evidence to the system to
check the validity of the execution and the new objects.

Once a transaction is accepted in the system it ‘consumes’
the input objects, that become inactive, and brings to life all new
output objects that start their life by being active. References
on the other hand must be active for the transaction to succeed,
and remain active once a transaction has been successfully
committed.

An client packages enough information about the execution
of those procedures to allow Chainspace to safely serialize its
execution, and atomically commit it only if all transactions are
valid according to relevant smart contract checkers.

B. System Design, Threat Model and Security Properties

We provide an overview of the system design, illustrated in
Figure 1. Chainspace is comprised of a network of infrastructure
nodes that manage valid objects, and ensure that only valid
transactions are committed. A key design goal is to achieve
scalability in terms of high transaction throughput and low
latency. To this end, nodes are organized into shards that manage
the state of objects, keep track of their validity, and record
transactions aborted or committed. Within each shard all honest
nodes ensure they consistently agree whether to accept or reject
a transaction: whether an object is active or inactive at any point,
and whether traces from contracts they know check. Across
shards, nodes must ensure that transactions are committed if
all shards are willing to commit the transaction, and rejected
(or aborted) if any shards decide to abort the transaction—due
to checkers returning false or objects being inactive. To satisfy
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Fig. 1. Design overview of Chainspace system.

these requirements, Chainspace implements S-BAC—a protocol
that composes existing Byzantine agreement and atomic commit
primitives in a novel way. Consensus on committing (or
aborting) transactions takes place in parallel across different
shards. For transparency and auditability, nodes in each shard
periodically publish a signed hash chain of checkpoints: shards
add a block (Merkle tree) of evidence including transactions
processed in the current epoch, and signed promises from other
nodes, to the hash chain.

Chainspace supports security properties against two distinct
types of adversaries, both polynomial time bounded:

• Honest Shards (HS). The first adversary may create
arbitrary contracts, and input arbitrary transactions into
Chainspace, however they are bound to only control
up to f faulty nodes in any shard. As a result, and
to ensure the correctness and liveness properties of
Byzantine consensus, each shard must have a size of
at least 3f + 1 nodes.

• Dishonest Shards (DS). The second adversary has,
additionally to HS, managed to gain control of one or
more shards, meaning that they control over f nodes
in those shards. Thus, its correctness or liveness may
not be guaranteed.

Faulty nodes in shards may behave arbitrarily, and collude
to violate any of the security, safely or liveness properties of
the system. They may emit incorrect or contradictory messages,
as well as not respond to any or some requests.

Given this threat model, Chainspace supports the following
security properties:

• Transparency. Chainspace ensures that anyone in
possession of the identity of a valid object may
authenticate the full history of transactions and objects
that led to the creation of the object. No transactions
may be inserted, modified or deleted from that causal
chain or tree. Objects may be used to self-authenticate
its full history—this holds under both the HS and DS
threat models.

• Integrity. Subject to the HS threat model, when one
or more transactions are submitted only a set of

valid non-conflicting transactions will be executed
within the system. This includes resolving conflicts—in
terms of multiple transactions using the same objects—
ensuring the validity of the transactions, and also
making sure that all new objects are registered as active.
Ultimately, Chainspace transactions are accepted, and
the set of active objects changes, as if executed
sequentially—however, unlike other systems such as
Ethereum [Woo14], this is merely an abstraction and
high levels of concurrency are supported.

• Encapsulation. The smart contract checking system
of Chainspace enforces strict isolation between smart
contracts and their state—thus prohibiting one smart
contract from directly interfering with objects from
other contracts. Under both the HS and DS threat
models. However, cross-contract calls are supported
but mediated by well defined interfaces providing
encapsulation.

• Non-repudiation. In case conflicting or otherwise
invalid transactions were to be accepted in honest
shards (in the case of the DS threat model), then
evidence exists to pinpoint the parties or shards in the
system that allowed the inconsistency to occur. Thus,
failures outside the HS threat model, are detectable; the
guildy parties may be banned; and appropriate off-line
recovery mechanisms could be deployed.

III. THE CHAINSPACE APPLICATION INTERFACE

Smart Contract developers in Chainspace register a smart
contract c into the distributed system managing Chainspace,
by defining a checker for the contract and some initial objects.
Users may then submit transactions to operate on those objects
in ways allowed by the checkers. Transactions represent the
execution of one or more procedures from one or more smart
contracts. It is necessary for all inputs to all procedures within
the transaction to be active for a transaction to be executed
and produce any output objects.

Transactions are atomic: either all their procedures run, and
produce outputs, or none of them do. Transactions are also
consistent: in case two transactions are submitted to the system
using the same active object inputs, at most one of them will
eventually be executed to produce outputs. Other transactions,
called conflicting, will be aborted.

Representation of Transactions. A transaction within
Chainspace is represented by sequence of traces of the
executions of the procedures that compose it, and their
interdependencies. These are computed and packaged by end-
user clients, and contain all the information a checker needs to
establish its correctness. A Transaction is a data structure such
that:

type Transaction : Trace list
type Trace : Record {

c : id(o), p : string,
~w,~r, ~x : id(o) list,
lpar, lret : arbitrary data,
dep : Trace list}

3



α0,Valid(t), α′ α′,Valid(T ′), α1 (Sequence)
α0,Valid(T = t :: T ′), α1

α0,Valid(dep), α′ α′, c.v(p, ~w,~r, lpar, ~x, lret, dep), (α′ \ ~w) ∪ ~x

~w,~r ∈ α′∧
(~x 6= ∅)→ (~w 6= ∅)∧

∀o ∈ ~w ∪ ~x ∪ ~r.type(o) ∈ types(c)
(Check)

α0,Valid(t = [c, p, ~w,~r, ~x, lpar, lret, dep]), (α′ \ ~w) ∪ ~x

Fig. 2. The sequencing and checking validity rules for transactions.

To generate a set of traces composing the transaction, a user
executes on the client side all the smart contract procedures
required on the input objects, references and local parameters,
and generates the output objects and local returns for every
procedure—potentially also using secret parameters and re-
turns. Thus the actual computation behind the transactions is
performed by the user, and the traces forming the transaction
already contain the output objects and return parameters, and
sufficient information to check their validity through smart
contract checkers. This design pattern is related to traditional
optimistic concurrency control.

Only valid transactions are eventually committed into
the Chainspace system, as specified by two validity rules
sequencing and checking presented in Figure 2. Transactions
are considered valid within a context of a set of active objects
maintained by Chainspace, denoted with α. Valid transactions
lead to a new context of active objects (eg. α′). We denote
this through the triplet (α,Valid(T ), α′), which is true if the
execution of transaction T is valid within the context of active
objects α and generates a new context of active objects α′. The
two rules are as follows:

• (Sequence rule). A ‘Trace list’ (within a ‘Transaction’
or list of dependencies) is valid if each of the traces are
valid in sequence (see Figure 2 rule for sequencing).
Further, the active objects set is updated in sequence
before considering the validity of each trace.

• (Check rule). A particular ‘Trace’ is valid, if the
sequence of its dependencies are valid, and then in
the resulting active object context, the checker for it
returns true. A further three side conditions must hold:
(1) inputs and references must be active; (2) if the
trace produces any output objects it must also contain
some input objects; and (3) all objects passed to the
checker must be of types defined by the smart contract
of this checker (see Figure 2 rule for checking).

The ordering of active object sets in the validation rules
result in a depth-first validation of all traces, which represents
a depth-first execution and data flow dependency between them.
It is also noteworthy that only the active set of objects needs
to be tracked to determine the validity of new transactions,
which is in the order of magnitude of active objects in the
system. The much longer list of inactive objects, which grows
to encompass the full history of every object in the system is not
needed—which we leverage to enable better when validating
transactions. It also results in a smaller amount of working
memory to perform incremental audits.

A valid transaction is executed in a serialized manner, and

committed or aborted atomically. If it is committed, the new set
of active objects replaces the previous set; if not the set of active
objects does not change. Determining whether a transaction
may commit involves ensuring all the input objects are active,
and all are consumed as a result of the transaction executing,
as well as all new objects becoming available for processing
(references however remain active). Chainspace ensures this
through the distributed atomic commit protocol, S-BAC.

Smart contract composition. A contract procedure may call a
transaction of another smart contract, with specific parameters
and rely upon returned values. This is achieved through passing
the dep variable to a smart contract checker, a validated list of
traces of all the sub-calls performed. The checker can ensure
that the parameters and return values are as expected, and those
dependencies are checked for validity by Chainspace.

Composition of smart contracts is a key feature of a
transparent and auditable computation platform. It allows the
creation of a library of smart contracts that act as utilities for
other higher-level contracts: for example, a simple contract
can implement a cryptographic currency, and other contracts—
for e-commerce for example—can use this currency as part
of their logic. Furthermore, we compose smart contracts, in
order to build some of the functionality of Chainspace itself
as a set of ‘system’ smart contracts, including management of
shards mapping to nodes, key management of shard nodes, and
governance.

Chainspace also supports the atomic batch execution of
multiple procedures for efficiency, that are not dependent on
each other.

Reads. Besides executing transactions, Chainspace clients, need
to read the state of objects, if anything, to correctly form
transactions. Reads, by themselves, cannot lead to inconsistent
state being accepted into the system, even if they are used as
inputs or references to transactions. This is a result of the system
checking the validity rules before accepting a transaction, which
will reject any stale state.

Thus, any mechanism may be used to expose the state of
objects to clients, including traditional relational databases, or
‘no-SQL’ alternatives. Additionally, any indexing mechanism
may be used to allow clients to retrieve objects with specific
characteristics faster. Decentralized, read-only stores have been
extensively studied, so we do not address the question of reads
further in this work.

Privacy by design. Defining smart contract logic as checkers
allows Chainspace to support privacy friendly-contracts by
design. In such contracts some information in objects is not
in the clear, but instead either encrypted using a public key,
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or committed using a secure commitment scheme as [P+91].
The transaction only contains a valid proof that the logic or
invariants of the smart contract procedure were applied correctly
or hold respectively, and can take the form of a zero-knowledge
proof, or a Succinct Argument of Knowledge (SNARK). Then,
generalizing the approach of [MGGR13], the checker runs the
verifier part of the proof or SNARK that validates the invariants
of the transactions, without revealing the secrets within the
objects to the verifiers.

IV. THE CHAINSPACE SYSTEM DESIGN

In Chainspace a network of infrastructure nodes manages
valid objects, and ensure key invariants: namely that only valid
transactions are committed. We discuss the data structures nodes
use collectively and locally to ensure high integrity; and the
distributed protocols they employ to reach consensus on the
accepted transactions.

A. High-Integrity Data Structures

Chainspace employs a number of high-integrity data struc-
tures. They enable those in possession of a valid object or
its identifier to verify all operations that lead to its creation;
they are also used to support non-equivocation—preventing
Chainspace nodes from providing a split view of the state they
hold without detection.

Hash-DAG structure. Objects and transactions naturally form
a directed acyclic graph (DAG): given an initial state of
active objects a number of transactions render their inputs
invalid, and create a new set of outputs as active objects.
These may be represented as a directed graph between objects,
transactions and new objects and so on. Each object may only
be created by a single transaction trace, thus cycles between
future transactions and previous objects never occur. We prove
that output object identifiers resulting from valid transactions
are fresh (see Security Theorem 1). Hence, the graph of objects
inputs, transactions and objects outputs form a DAG, that may
be indexed by their identifiers.

We leverage this DAG structure, and augment it to provide a
high-integrity data structure. Our principal aim is to ensure that
given an object, and its identifier, it is possible to unambiguously
and unequivocally check all transactions and previous (now
inactive) objects and references that contribute to the existence
of the object. To achieve this we define as an identifier for all
objects and transactions a cryptographic hash that directly or
indirectly depends on the identifiers of all state that contributed
to the creation of the object.

Specifically, we define a function id(Trace) as the identifier
of a trace contained in transaction T . The identifier of a trace
is a cryptographic hash function over the name of contract and
the procedure producing the trace; as well as serialization of
the input object identifiers, the reference object identifiers, and
all local state of the transaction (but not the secret state of
the procedures); the identifiers of the trace’s dependencies are
also included. Thus all information contributing to defining
the Trace is included in the identifier, except the output object
identifiers.

We also define the id(o) as the identifier of an object o. We
derive this identifier through the application of a cryptographic

hash function, to the identifier of the trace that created the
object o, as well as a unique name assigned by the procedures
creating the trace, to this output object. (Unique in the context
of the outputs of this procedure call, not globally, such as a
local counter.)

An object identifier id(o) is a high-integrity handle that may
be used to authenticate the full history that led to the existence
of the object o. Due to the collision resistance properties of
secure cryptographic hash functions an adversary is not able
to forge a past set of objects or transactions that leads to an
object with the same identifier. Thus, given id(o) anyone can
verify the authenticity of a trace that led to the existence of o.

A very important property of object identifiers is that
future transactions cannot re-create an object that has already
become inactive. Thus checking object validity only requires
maintaining a list of active objects, and not a list of past inactive
objects:

Security Theorem 1. No sequence of valid transactions, by
a polynomial time constrained adversary, may re-create an
object with the same identifier with an object that has already
been active in the system.

Proof: We argue this property by induction on the serialized
application of valid transactions, and for each transaction by structural
induction on the two validity rules. Assuming a history of n − 1
transactions for which this property holds we consider transaction n.
Within transaction n we sequence all traces and their dependencies,
and follow the data flow of the creation of new objects by the ‘check’
rule. For two objects to have the same id(o) there need to be two
invocations of the check rule with the same contract, procedure, inputs
and references. However, this leads to a contradiction: once the first
trace is checked and considered valid the active input objects are
removed from the active set, and the second invocation becomes
invalid. Thus, as long as object creation procedures have at least one
input (which is ensured by the side condition) the theorem holds,
unless an adversary can produce a hash collision. The inductive base
case involves assuming that no initial objects start with the same
identifier – which we can ensure axiomatically.

We call this directed acyclic graph with identifiers derived
using cryptographic functions a Hash-DAG, and we make
extensive use of the identifiers of objects and their properties
in Chainspace.

Node Hash-Chains. Each node in Chainspace, that is entrusted
with preserving integrity, associates with its shard a hash chain.
Periodically, peers within a shard consistently agree to seal a
checkpoint, as a block of transactions into their hash chains.
They each form a Merkle tree containing all transactions that
have been accepted or rejected in sequence by the shard since
the last checkpoint was sealed. Then, they extend their hash
chain by hashing the root of this Merkle tree and a block
sequence number, with the head hash of the chain so far, to
create the new head of the hash chain. Each peer signs the new
head of their chain, and shares it with all other peers in the shard,
and anyone who requests it. For strong auditability additional
information, besides committed or aborted transactions, has to
be included in the Merkle tree: node should log any promise
to either commit or abort a transaction from any other peer in
any shard (the prepared(T,*) statements explained in the next
sections).

All honest nodes within a shard independently create the
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same chain for a checkpoint, and a signature on it—as long
as the consensus protocols within the shards are correct. We
say that a checkpoint represents the decision of a shard, for a
specific sequence number, if at least f + 1 signatures of shard
nodes sign it. On the basis of these hash chains we define a
partial audit and a full audit of the Chainspace system.

In a partial audit a client is provided evidence that a
transaction has been either committed or aborted by a shard.
A client performing the partial audit may request from any
node of the shard evidence for a transaction T. The shard peer
will present a block representing the decision of the shard,
with f + 1 signatures, and a proof of inclusion of a commit or
abort for the transaction, or a signed statement the transaction
is unknown. A partial audit provides evidence to a client of
the fate of their transaction, and may be used to detect past
of future violations of integrity. A partial audit is an efficient
operation since the evidence has size O(s+ logN) in N the
number of transactions in the checkpoint and s the size of
the shard—thanks to the efficiency of proving inclusion in a
Merkle tree, and checking signatures.

A full audit involves replaying all transactions processed
by the shard, and ensuring that (1) all transactions were valid
according to the checkers the shard executed; (2) the objects
input or references of all committed transactions were all active
(see rules in Figure 2); and (3) the evidence received from
other shards supports committing or aborting the transactions.
To do so an auditor downloads the full hash-chain representing
the decisions of the shard from the beginning of time, and
re-executes all the transactions in sequence. This is possible,
since—besides their secret signing keys—peers in shards
have no secrets, and their execution is deterministic once
the sequence of transactions is defined. Thus, an auditor can
re-execute all transactions in sequence, and check that their
decision to commit or abort them is consistent with the decision
of the shard. Doing this, requires any inter-shard communication
(namely the promises from other shards to commit or abort
transactions) to be logged in the hash-chain, and used by the
auditor to guide the re-execution of the transactions. A full
audit needs to re-execute all transactions and requires evidence
of size O(N) in the number N of transactions. This is costly,
but may be done incrementally as new blocks of shard decisions
are created.

B. Distributed Architecture & Consensus

A network of nodes manages the state of Chainspace objects,
keeps track of their validity, and record transactions that are
seen or that are accepted as being committed.

Chainspace uses sharding strategies to ensure scalability:
a public function φ(o) maps each object o to a set of nodes,
we call a shard. These nodes collectively are entrusted to
manage the state of the object, keep track of its validity, record
transactions that involve the object, and eventually commit
at most one transaction consuming the object as input and
rendering it inactive. However, nodes must only record such a
transaction as committed if they have certainty that all other
nodes have, or will in the future, record the same transaction
as consuming the object. We call this distributed algorithm the
consensus algorithm within the shard.

For a transaction T we define a set of concerned nodes,
Φ(T ) for a transaction structure T . We first denote as ζ the
set of all objects identifiers that are input into or referenced
by any trace contained in T . We also denote as ξ the set of
all objects that are output by any trace in T . The function
Φ(T ) represents the set of nodes that are managing objects
that should exist, and be active, in the system for T to succeed.
More mathematically, Φ(T ) =

⋃
{φ(oi)|oi ∈ ζ \ ξ}, where

ζ \ ξ represents the set of objects input but not output by the
transaction itself (its free variables). The set of concerned peers
thus includes all shard nodes managing objects that already
exist in Chainspace that the transaction uses as references or
inputs.

An important property of this set of nodes holds, that ensures
that all smart contracts involved in a transaction will be mapped
to some concerned nodes that manage state from this contract:

Security Theorem 2. If a contract c appears in any trace
within a transaction T , then the concerned nodes set Φ(T )
will contain nodes in a shard managing an object o of a type
from contract c. I.e. ∃o.type(o) ∈ types(c)∧ φ(o)∩Φ(T ) 6= ∅.

Proof: Consider any trace t within T , from contract c. If the
inputs or references to this trace are not in ξ—the set of objects that
were created within T—then their shards will be included within
Φ(T ). Since those are of types within c the theorem holds. If on the
other hand the inputs or references are in ξ, it means that there exists
another trace within T from the same contract c that generated those
outputs. We then recursively apply the case above to this trace from
the same c. The process will terminate with some objects of types
in c and shard managing them within the concerned nodes set—and
this is guarantee to terminate due to the Hash-DAG structure of the
transactions (that may have no loops).

Security Theorem 2 ensures that the set of concerned
nodes, includes nodes that manage objects from all contracts
represented in a transaction. Chainspace leverages this to
distribute the process of rule validation across peers in two
ways:

• For any existing object o in the system, used as a
reference or input within a transaction T , only the
shard nodes managing it, namely in φ(o), need to
check that it is active (as part of the ‘check’ rule in
Figure 2).

• For any trace t from contract c within a transaction T ,
only shards of concerned nodes that manage objects of
types within c need to run the checker of that contract
to validate the trace (again as part of the ‘check’ rule),
and that all input, output and reference objects are of
types within c.

However, all shards containing concerned nodes for T need
to ensure that all others have performed the necessary checks
before committing the transaction, and creating new objects.

There are many options for ensuring that concerned nodes in
each shards do not reach an inconsistent state for the accepted
transactions, such as Nakamoto consensus through proof-of-
work [Nak08], two-phase commit protocols [LL94], and clas-
sical consensus protocols like Paxos [L+01], PBFT [CL+99],
or xPaxos [LCQV15]. However, these approaches lack in
performance, scalability, and/or security. We design an open,
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Fig. 3. The state machine representing the active, locked and inactive states
for any object within Chainspace. Each node in a shard replicates the state of
the object, and participates in a consensus protocol that allows it to derive the
invariants “Local prepared”, “All prepared”, and “Some prepared” to update
the state of an object.

scalable and decentralized mechanism to perform Sharded
Byzantine Atomic Commit or S-BAC.

C. Sharded Byzantine Atomic Commit (S-BAC).

Chainspace implements the previously described intra-shard
consensus algorithm for transaction processing in the byzantine
and asynchronous setting, through the Sharded Byzantine
Atomic Commit (S-BAC) protocol, that combines two primitive
protocols: Byzantine Agreement and atomic commit.

• Byzantine agreement ensures that all honest members
of a shard of size 3f + 1, agree on a specific common
sequence of actions, despite some f malicious nodes
within the shard. It also guarantees that when agree-
ment is sought, a decision or sequence will eventually
be agreed upon. The agreement protocol is executed
within each shard to coordinate all nodes. We use MOD-
SMART [SB12] implementation of PBFT for state
machine replication that provides an optimal number of
communications steps (similar to PBFT [CL+99]). This
is achieved by replacing reliable broadcast with a spe-
cial leader-driven Byzantine consensus primitive called
Validated and Provable Consensus (VP-Consensus).

• Atomic commit is ran across all shards managing
objects relied upon by a transaction. It ensures that
each shard needs to accept to commit a transaction,
for the transaction to be committed; even if a sin-
gle shard rejects the transaction, then all agree it
is rejected. We propose the use of a simple two-
phase commit protocol [BHG87], composed with an
agreement protocol to achieve this—loosely inspired
by Lamport and Gray [GL06]. This protocol was the
first to reconcile the needs for distributed commit, and
replicated consensus (but only in the non-byzantine
setting).

S-BAC composes the above primitives in a novel way
to ensure that shards process safely and consistently all
transactions. Figure 4 illustrates a simple example of the S-BAC
protocol to commit a single transaction with two inputs and one
output that we may use as an example. The corresponding object
state transitions have been illustrated in Figure 3. The combined

protocol has been described below. For ease of understanding,
in our description we state that all messages are sent and
processed by shards. In reality, some of these are handled by
a designated node in each shard—the BFT-Initiator —as we
discuss at the end of this section.

Initial Broadcast (Prepare). A user acts as a transaction
initiator, and sends ‘prepare(T)’ to at least one honest concerned
node for transaction T . To ensure at least one honest node
receives it, the user may send the message to f + 1 nodes of a
single shard, or f + 1 nodes in each concerned shard.

Sequence Prepare. Upon a message ‘prepare(T)’ being re-
ceived, nodes in each shard interpret it as the initiation of a two-
phase commit protocol performed across the concerned shards.
The shard locally sequences ‘prepare(T)’ message through the
Byzantine consensus protocol.

Process Prepare. Upon the first action ‘prepare(T )’ being
sequenced through BFT consensus in a shard, nodes of the
shard implicitly decide whether it should be committed or
aborted. Since all honest nodes in the shard have a consistent
replica of the full sequence of actions, they will all decide the
same consistent action following ‘prepare(T)’.

Transaction T is to be committed if it is valid according to
the usual rules (see Figure 2), in brief: (1) the objects input
or referenced by T in the shard are active, (2) there is no
other instance of the two-phase commit protocol on-going
concerning any of those objects (no locks held) and (3) if T
is valid according to the validity rules, and the smart contract
checkers in the shard. Only the checkers for types of objects
held by the shard are checked by the shard.

If the decision is to commit, the shard broadcasts to all
concerned nodes ‘prepared(T ,commit)’, otherwise it broadcasts
‘prepared(T , abort)’—along with sufficient signatures to con-
vince any party of the collective shard decision (we denote
this action as LOCALPREPARED(*, T)). The objects used or
referenced by T are ‘locked’ (Figure 3) in case of a ‘prepared
commit’ until an ‘accept’ decision on the transaction is reached,
and subsequent transactions concerning them will be aborted by
the shard. Any subsequent ‘prepare(T ′′)’ actions in the sequence
are ignored, until a matching accept(T , abort) is reached to
release locks, or forever if the transaction is committed.

Process Prepared (accept or abort). Depending on the deci-
sion of ‘prepare(T )’, the shard sequences ‘accept(T ,commit)’ or
‘accept(T ,abort)’ through the atomic commit protocol across all
the concerned shards—along with all messages and signatures
of the bundle of ‘prepared’ messages relating to T proving to
other shards that the decision should be ‘accept(T ,commit)’ or
‘accept(T ,abort)’ according to its local consensus. If it receives
even a single ‘LOCALPREPARED(T ,abort)’ from another shard
it instead will move to reach consensus on ‘accept(T , abort)’
(denoted as SOMEPREPARED(abort,T)). Otherwise, if all the
shards respond with ‘LOCALPREPARED(T ,commit)’ it will
reach a consensus on ALLPREPARED(commit,T). The final
decision is sent to the user, along with all messages and
signatures of the bundle of ‘accept’ messages relating to T
proving that the final decision should be to commit or abort
according to responses from all concerned shards.
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Fig. 4. S-BAC for a transaction T with two inputs (o1, o2) and one output object (o3). The user sends the transaction to all nodes in shards managing o1 and o2.
The BFT-Initiator takes the lead in sequencing T , and emits ’prepared(accept, T)’ or ’prepared(abort, T)’ to all nodes within the shard. Next the BFT-Initiator of
each shard assesses whether overall ‘All proposed(accept, T)’ or ‘Some proposed(abort, T)’ holds across shards, sequences the accept(T,*), and sends the decision
to the user. All cross-shard arrows represent a multicast of all nodes in one shard to all nodes in another.

It is possible, that a shard hears a prepared message for
T before a prepare message, due to unreliability, asynchrony
or a malicious user. In that case the shard assumes that a
‘prepare(T)’ message is implicit, and sequences it.

Process Accept. When a shard sequences an ‘accept(T , com-
mit)’ decision, it sets all objects that are inputs to the transaction
T as being inactive (Figure 3). It also creates any output objects
from T via BFT consensus that are to be managed by the shard.
If the output objects are not managed by the shard, the shard
sends requests to the concerned shards to create the objects. On
the other hand if the shard decision is ‘accept(T , abort)’, all
nodes release locks held on inputs or references of transaction
T . Thus those objects remain active and may be used by other
transactions.

As previously mentioned, some of the messages in S-BAC
are handled by a designated node in each shard called the BFT-
Initiator . Specifically, the BFT-Initiator drives the composed
S-BAC protocol by sending ‘prepare(T)’ and then ‘accept(T , *)’
messages to reach BFT consensus within and across shards. It is
also responsible for broadcasting consensus decisions to relevant
parties. The protocol supports a two-phase process to recover
from a malicious BFT-Initiator that suppresses transactions. As
nodes in a shard hear all messages, they wait for the BFT-
Initiator to act on it until they time out. They first send a
reminder to the BFT-Initiator along with the original message
to account for network losses. Next they proceed to wait; if
they time out again, other nodes perform the action of BFT-
Initiator which is idempotent.

D. Concurrency & Scalability

Each transaction T involves a fixed number of concerned
nodes Φ(T ) within Chainspace, corresponding to the shards
managing its inputs and references. If two transactions T0 and
T1 have disjoint sets of concerned nodes (Φ(T0)∩Φ(T1) = ∅)
they cannot conflict, and are executed in parallel or in any
arbitrary order. If however, two transactions have common
input objects, only one of them is accepted by all nodes. This
is achieved through the S-BAC protocol. It is local, in that it
concerns only nodes managing the conflicting transactions, and
does not require a global consensus.

From the point of view of scalability, Chainspace capacity
grows linearly as more shards are added, subject to transactions
having on average a constant, or sub-linear, number of inputs
and references (see Figure 6). Furthermore, those inputs must
be managed by different nodes within the system to ensure
that load of accepting transactions is distributed across them.

V. SECURITY AND CORRECTNESS

A. Security & Correctness of S-BAC

The S-BAC protocol guarantees a number of key properties,
on which rest the security of Chainspace, namely liveness
consistency, and validity. Before proceeding with stating those
properties in details, and proving them we note three key
invariants, that nodes may decide:

• LOCALPREPARED(commit / abort, T): A node con-
siders that LOCALPREPARED(commit / abort, T) for
a shard holds, if it receives at least f + 1 distinct
signed messages from nodes in the shard, stating ‘pre-
pared(commit, T)’ or ‘prepared(abort, T)’ respectively.
As a special case a node automatically concludes
LOCALPREPARED(commit / abort, T) for a shard it
is a member of, if all the preconditions necessary to
provide that answer are present when an ‘prepare(T)’
is sequenced.

• ALLPREPARED(commit, T): A node considers that
‘ALLPREPARED(commit, T)’ holds if it believes that
‘LOCALPREPARED(commit, T)’ holds for all shards
with concerned nodes for T . Note this may only
be decided after reaching a conclusion (e.g. through
receiving signed messages) about all shards.

• SOMEPREPARED(abort, T): A node considers that
‘SOMEPREPARED(abort, T)’ holds if it believes that
‘LOCALPREPARED(abort, T)’ holds for at least one
shard with concerned nodes for T . This may be
concluded after only reaching a conclusion for a single
shard, including the shard the node may be part of.

Liveness ensures that transactions make progress once
proposed by a user, and no locks are held indefinitely on
objects, preventing other transactions from making progress.
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S-BAC Theorem 1. Liveness: Under the ‘honest shards’ threat
model, a transaction T that is proposed to at least one honest
concerned node, will eventually result in either being committed
or aborted, namely all parties deciding accept(commit, T) or
accept(abort, T).

Proof: We rely on the liveness properties of the byzantine
agreement (shards with only f nodes will reach a consensus on a
sequence), and the broadcast from nodes of shards to all other nodes of
shards, including the shards that manage transaction outputs. Assuming
prepare(T) has been given to an honest node, it will be sequenced
withing an honest shard BFT sequence, and thus a prepared(commit,
T) or prepared(abort, T) will be sent from the 2f + 1 honest nodes of
this shard, to the 2f + 1 nodes of the other concerned shards. Upon
receiving these messages the honest nodes from other shards will
schedule a prepare(T) message within their shards, and the BFT will
eventually sequence it. Thus the user and all other honest concerned
nodes will receive enough ‘prepared’ messages to decide whether to
proceed with ‘ALLPREPARED(commit, T)’ or ‘SOMEPREPARED(abort,
T)’ and proceed with sequencing them through BFT. Eventually, each
shard will sequence those, and decide on the appropriate ‘accept’.

The second key property ensures that the execution of all
transactions could be serialized, and thus is correct.

S-BAC Theorem 2. Consistency: Under the ‘honest shards’
threat model, no two conflicting transactions, namely transac-
tions sharing the same input will be committed. Furthermore,
a sequential executions for all transactions exists.

Proof: A transaction is committed only if some nodes conclude
that ‘ALLPREPARED(commit, T)’, which presupposes all shards have
provided enough evidence to conclude ‘LOCALPREPARED(commit,
T)’ for each of them. Two conflicting transaction, sharing an input
or reference, must share a shard of at least 3f + 1 concerned nodes
for the common object—with at most f of them being malicious.
Without loss of generality upon receiving the prepare(T) message
for the first transaction, this shard will sequence it, and the honest
nodes will emit messages for all to conclude ‘ALLPREPARED(commit,
T)’—and will lock this object until the two phase protocol concludes.
Any subsequent attempt to prepare(T’) for a conflicting T’ will result
in a LOCALPREPARED(abort, T’) and cannot yield a commit, if all
other shards are honest majority too. After completion of the first
‘accept(commit, T)’ the shard removes the object from the active set,
and thus subsequent T’ would also lead to SOMEPREPARED(abort,
T’). Thus there is no path in the chain of possible interleavings of
the executions of two conflicting transactions that leads to them both
being committed.

S-BAC Theorem 3. Validity: Under the ‘honest shards’ threat
model, a transaction may only be committed if it is valid
according to the smart contract checkers matching the traces
of the procedures it executes.

Proof: A transaction is committed only if some nodes conclude
that ‘ALLPREPARED(commit, T)’, which presupposes all shards have
provided enough evidence to conclude ‘LOCALPREPARED(commit,
T)’ for each of them. The concerned nodes include at least one shard
per input or reference object for the transaction; for any contract c
represented in the transaction, at least one of those shards will be
managing object from that contract. Each shard checks the validity
rules for the objects they manage (ensuring they are active, and not
locked) and the contracts those objects are part of (ensuring the
calls to c pass its checker) in order to LOCALPREPARED(accept, T).
Thus if all shards say LOCALPREPARED(accept, T) to conclude that
‘ALLPREPARED(commit, T)’, all object have been checked as active,
and all the contract calls within the transaction have been checked by

at least one shard—whose decision is honest due to at most f faulty
nodes. If even a single object is inactive or locked, or a single trace
for a contract fails to check, then the honest nodes in the shard will
emit ‘prepared(abort, T)’ upon sequencing ‘prepare(T)’, and the final
decision will be ‘SOMEPREPARED(abort, T)’.

B. Auditability

In the previous sections we show that if each shard contains
at most f faulty nodes (honest shard model), the S-BAC
protocol guarantees consistency and validity. In this section
we argue that if this assumption is violated, i.e. one or more
shards contain more than f byzantine nodes each, then honest
shards can detect faulty shards. Namely, enough auditing
information is maintained by honest nodes in Chainspace to
detect inconsistencies and attribute them to specific shards (or
nodes within them).

The rules for transaction validity are summarized in Figure 2.
Those rules are checked in a distributed manner: each shard
keeps and checks the active or inactive state of objects assigned
to it; and also only the contract checkers corresponding to the
type of those objects. An honest shard emits a proposed(T,
commit) for a transaction T only if those checks pass, and
proposed(T, abort) otherwise or if there is a lock on a relevant
object. A dishonest shard may emit proposed(T, *) messages
arbitrarily without checking the validity rules. By definition,
an invalid transaction is one that does not pass one or more of
the checks defined in Figure 2 at a shared, for which the shard
has erroneously emitted a proposed(T, commit) message.

Security Theorem 3. Auditability: A malicious shard (with
more than f faulty nodes) that attempts to introduce an invalid
transaction or object into the state of one or more honest
shards, can be detected by an auditor performing a full audit
of the Chainspace system.

Proof: We consider two hash-chains from two distinct shards.
We define the pair of them as being valid if (1) they are each valid
under full audit, meaning that a re-execution of all their transactions
under the messages received yields the same decisions to commit
or abort all transactions; and (2) if all prepared(T,*) messages in
one chain are compatible with all messages seen in the other chain.
In this context ‘compatible’ means that all prepared(T,*) statements
received in one shard from the other represent the ‘correct’ decision
to commit or abort the transaction T in the other shard. An example
of incompatible message would result in observing a proposed(T,
commit) message being emitted from the first shard to the second,
when in fact the first shard should have aborted the transaction, due
to the checker showing it is invalid or an input being inactive.

Due to the property of digital signatures (unforgeability and non-
repudiation), if two hash-chains are found to be ‘incompatible’, one
belonging to an honest shard and one belonging to a dishonest shard,
it is possible for everyone to determine which shard is the dishonest
one. To do so it suffices to isolate all statements that are signed by
each shard (or a peer in the shard)—all of which should be self-
consistent. It is then possible to show that within those statements
there is an inconsistency—unambiguously implicating one of the two
shards in the cheating. Thus, given two hash-chains it is possible
to either establish their consistency, under a full audit, or determine
which belongs to a malicious shard.

Note that the mechanism underlying tracing dishonest shards
is an instance of the age-old double-entry book keeping1: shards

1The first reported use is 1340AD [LW94].
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keep records of their operations as a non-repudiable signed hash-
chain of checkpoints—with a view to prove the correctness of
their operations. They also provide non-repudiable statements
about their decisions in the form of signed proposed(T,*)
statements to other shards. The two forms of evidence must
be both correct and consistent—otherwise their misbehaviour
is detected.

VI. SYSTEM AND APPLICATIONS SMART CONTRACTS

A. System Contracts

The operation of a Chainspace distributed ledger itself
requires the maintenance of a number of high-integrity high-
availability data structures. Instead of employing an ad-hoc
mechanism, Chainspace employs a number of system smart
contracts to implement those. Effectively, instantiation of
Chainspace is the combination of nodes running the basic
S-BAC protocol, as well as a set of system smart contracts
providing flexible policies about managing shards, smart
contract creation, auditing and accounting. This section provides
an overview of system smart contracts.

Shard management. The discussion of Chainspace so far,
has assumed a function φ(o) mapping an object o to nodes
forming a shard. However, how those shards are constituted
has been abstracted. A smart contract ManageShards is
responsible for mapping nodes to shards. ManageShards
initializes a singleton object of type MS.Token and provides
three procedures: MS.create takes as input a singleton object,
and a list of node descriptors (names, network addresses and
public verification keys), and creates a new singleton object
and a MS.Shard object representing a new shard; MS.update
takes an existing shard object, a new list of nodes, and 2f + 1
signatures from nodes in the shard, and creates a new shard
object representing the updated shard. Finally, the MS.object
procedure takes a shard object, and a non-repudiable record of
malpractice from one of the nodes in the shard, and creates
a new shard object omitting the malicious shard node—after
validating the misbehaviour. Note that Chainspace is ‘open’ in
the sense that any nodes may form a shard; and anyone may
object to a malicious node and exclude it from a shard.

Smart-contract management. Chainspace is also ‘open’ in
the sense that anyone may create a new smart contract, and this
process is implemented using the ManageContracts smart con-
tract. ManageContracts implements three types: MC.Token,
MC.Mapping and MC.Contract. It also implements at least
one procedure, MC.create that takes a binary representing a
checker for the contract, an initialization procedure name that
creates initial objects for the contract, and the singleton token
object. It then creates a number of outputs: one object of type
MC.Token for use to create further contracts; an object of
type MC.Contract representing the contract, and containing
the checker code, and a mapping object MC.mapping encoding
the mapping between objects of the contract and shards within
the system. Furthermore, the procedure MC.create calls the
initialization function of the contract, with the contract itself
as reference, and the singleton token, and creates the initial
objects for the contract.

Note that this simple implementation for ManageContracts
does not allow for updating contracts. The semantics of such

an update are delicate, particularly in relation to governance
and backwards compatibility with existing objects. We leave
the definitions of more complex, but correct, contracts for
managing contracts as future work. In our first implementation
we have hardcoded ManageShards and ManageContracts.

Payments for processing transactions. Chainspace is an open
system, and requires protection againt abuse resulting from
overuse. To achieve this we implement a method for tracking
value through a contract called CSCoin.

The CSCoin contract creates a fixed initial supply of coins—
a set of objects of type The CSCoin.Account that may only be
accessed by a user producing a signature verified by a public
key denoted in the object. A CSCoin.transfer procedure allows
a user to input a number of accounts, and transfer value between
them, by producing the appropriate signature from incoming
accounts. It produces a new version of each account object
with updated balances. This contract has been implemented in
Python with approximately 200 lines of code.

The CSCoin contract is designed to be composed with other
procedures, to enable payments for processing transactions.
The transfer procedure outputs a number of local returns
with information about the value flows, that may be used in
calling contracts to perform actions conditionally on those flows.
Shards may advertise that they will only consider actions valid
if some value of CSCoin is transferred to their constituent
nodes. This may apply to system contracts and application
contracts.

B. Application level smart contracts

This section describes some examples of privacy-friendly
smart contracts and showcases how smart contract creators may
use Chainspace to implement advanced privacy mechanisms.

Smart-Meter Private Billing.

We implement a basic private smart-meter billing mecha-
nism [JJK11, RD12] using the contract SMet: it implements
three types SMet.Token, SMet.Meter and SMet.Bill; and
three procedures, SMet.createMeter, SMet.AddReading, and
SMet.computeBill. The procedure SMet.createMeter takes
as input the singletone token and a public key and signature as
local parameters, and it outputs a SMet.Meter object tied to this
meter public key if the signature matches. SMet.Meter objects
represent a collection of readings and some meta-data about the
meter. Subsequently, the meter may invoke SMet.addReading
on a SMet.Meter with a set of cryptographic commitments
readings and a period identifier as local parameters, and a valid
signature on them. A signature is also included and checked to
ensure authenticity from the meter. A new object SMet.Meter
is output appending the list of new readings to the previous
ones. Finally, a procedure SMet.computeBill is invoked with
a SMet.Meter and local parameters a period identifier, a set
of tariffs for each reading in the period, and a zero-knowledge
proof of correctness of the bill computation. The procedure
outputs a SMet.Bill object, representing the final bill in plain
text and the meter and period information.

This proof of correctness is provided to the checker—
rather than the secret readings—which proves that the readings
matching the available commitments and the tariffs provided
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yield the bill object. The role of the checker, which checks
public data, in both those cases is very different from the role of
the procedure that is passed secrets not available to the checkers
to protect privacy. This contracts has been implemented in about
200 lines of Python code and is evaluated in section Section VII.

A Platform for Decision Making. An additional example of
Chainspace’s privacy-friendly application is a smart voting
system. We implement the contract SVote with three types,
SVote.Token, SVote.Vote and SVote.Tally; and three proce-
dures.

SVote.createElection, consumes a singleton token and
takes as local parameters the options, a list of all voter’s public
key, the tally’s public key, and a signature on them from the tally.
It outputs a fresh SVote.Vote object, representing the initial
stage of the election (all candidates having a score of zero)
along with a zero-knowledge proof asserting the correctness
of the initial stage.

SVote.addVote, is called on a SVote.Vote object and
takes as local parameters a new vote to add, homomorphically
encrypted and signed by the voter. In addition, the voter
provides a zero-knowledge proof certifying that her vote is a
binary value and that she voted for exactly one option. The
voter’s public key is then removed from the list of participants
to ensure that she cannot vote more than once. If all proofs are
verified by the checker and the voter’s public key appears in the
list, a new SVote.Vote object is created as the homomorphic
addition of the previous votes with the new one. Note that the
checker does not need to know the clear value of the votes to
assert their correctness since it only has to verify the associated
signatures and zero-knowledge proofs.

Finally, the procedure SVote.tally is called to threshold
decrypt the aggregated votes and provide a SVote.Tally object
representing the final election’s result in plain text, along with a
proof of correct decryption from the tally. The SVote contract’s
size is approximately 400 lines.

VII. IMPLEMENTATION & EVALUATION

We implemented a prototype of Chainspace in ∼10K lines
of Python and Java code. The implementation consists of
two components: a Python contracts environment and a Java
node. We have released the code as an open-source project on
GitHub.2

Python Contract Environment. The Python contracts envi-
ronment allows developers to write, deploy and test smart
contracts. These are deployed on each node by running the
Python script for the contract, which starts a local web service
for the contract’s checker. The contract’s checker is then called
though the web service. The environment provides a framework
to allow developers to write smart contracts with little worry
about the underlying implementation, and provides an auto-
generated checker for simple contracts.

Java Node Implementation. The Java node implements a
shard replica that accepts incoming transactions from clients
and initiates, and executes, the S-BAC protocol. For BFT
consensus, we use the BFT-SMART [BSA14] Java library—one

2URL omitted for double-blind review.
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Fig. 5. Diagram illustrating the implementation of a Chainspace system with
two shards managing four nodes each. The user submits the transaction to its
local S-BAC client through a built-in HTTP API (arrow 1). Then, this S-BAC
client sends the transaction to Chainspace (arrow 2).

of the very few maintained open source libraries implementing
byzantine consensus.

To communicate with Chainspace, end users also run an
S-BAC–enabled client. First, she creates a transaction through
the Python environments using one or many existing smart
contracts. She then submits the transaction to its S-BAC
client through the HTTP API as indicated in Figure 5, that
sends the transaction to Chainspace according to the BFT-
SMART protocol.

A node is composed of a server divided in two parts: the
core and the checker. To communicate with other nodes, each
node also contains an S-BAC client. When a transaction is
received, the core is in charge of verifying that the input objects
and references are active (neither locked nor inactive). Then,
the node runs the checker associated with the contract, in an
isolated container. (The checker is provided by the contract’s
creator when the node starts up, and interfaces with the node
through an HTTP API.) When the client submits a transaction
with dependencies, the core recursively checks each dependent
transaction first, and the top-level transaction at last (similar to
depth-first search algorithm).

Performance Measurements. We evaluated the performances
and scalability of our implementation of Chainspace, through
deployments on Amazon EC2 containers. We launched up to
96 nodes on t2.medium virtual machines, each containing 8 GB
of RAM on 2 virtual CPUs and running GNU/Linux Debian
8.1. We sent transactions to the network from a Chainspace
client running on a t2.xlarge virtual machine, containing 16
GB of RAM and 4 virtual CPUs, also running GNU/Linux
Debian 8.1. In our tests, we map objects to shards randomly
using the mapping function φ(o) = id(o) mod K where K
is a constant representing the number of shards and id(o) is
the SHA256 hash of the object.

We first measure the effect of the number of shards on
transaction throughput (Figure 6). The transaction throughput
of Chainspace scales linearly with the number of shards: with
4 nodes per shard, the number of transactions per second (t/s)
increases on average by 22 for 1-input transactions for each
shard added. This is because as inputs are randomly assigned
to shards based on their hashes, the transaction processing load
is spread out over a larger number of shards.

Next we investigate the effect of shard size (the number
of nodes per shard) on transaction throughput (Figure 9). We
fix the number of shards to 2, and increase the number of
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Fig. 6. The effect of the number of shards on transaction throughput. (Shards:
2, nodes per shard: 4, input-to-shard mapping: random. Repeats: 20.)

nodes per shard from 2 to 48. With BFT-SMART configured
for 3f + 1 fault tolerance, we observe an expected gracious
decrease in transaction throughput: for each node added, the
throughput reduces on average by 1.6 transactions per second.
This is because in order for a BFT-SMART node to realise
consensus for a message, it must receive a result from at least
f + 1 nodes. Thus, the bottleneck is the latency of the f + 1th
node with the highest response time.

Another factor that can potentially affect transaction through-
put is the number of inputs per transaction: the more shards
touched by the transaction inputs, the longer it will take to run
S-BAC among all the concerned shards. In Figure 7, we study
how the number of inputs per transaction affects transaction
throughput. We measure this for 5 shards, varying the number
of inputs per transaction from 1 to 10, and the inputs are
randomly mapped to shards as previously stated. The transaction
throughput decreases asymptotically until it becomes stable at
around 40 transactions per second. This is because S-BAC’s
maximum time in processing transactions is capped at the time
it takes to process transactions that touch all the 5 shards.
Increasing the number of inputs does not further deteriorate
the transaction throughput.

Finally, we measure the client-perceived latency—the time
from when a client submits a transaction until it receives a
decision about whether the transaction has been committed—
under varying system loads expressed in terms of transactions
received per second. Figure 8 shows the effect of transactions
received by the system per second (all 1-input transactions) on
client-perceived latency for 2 shards, each having 4 nodes.
Recall from Figure 6 that the average throughput for a
Chainspace system with similar configuration is 75 1-input
transactions per second. Consequently, we observe in Figure 9
that the increase in latency with varying system loads is smaller
for 20 t/s–60 t/s (average 69 ms), but the values start to get
bigger after 60 t/s (average 210 ms). This is when the system
reaches its maximum transaction throughput, causing a backlog
of transactions to be processed.

Smart Contract Benchmarks. We evaluate the cost and
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Fig. 7. The effect of the number of inputs per transaction on transaction
throughput. (Shards: 2, nodes per shard: 4, input-to-shard mapping: random.
Repeats: 20.)
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shard: 4, inputs per transaction: 1, input-to-shard mapping: random. Repeats:
5.)

performance of some smart contracts described in Section VI-A.
We compute the mean (µ) and standard deviation (σ) of the
execution of each procedure (denoted as [g]) and checker
(denoted as [c]) in the contracts. Each figure is the result
of 10,000 measured on a dual-core Apple MacBook Pro
4.1, 2.7GHz Intel Core i7. The last column indicates the
transaction’s size resulting from executing the procedure.
All cryptographic operations as digital signatures and zero-
knowledge proofs have been implemented using the Python
library petlib [pet17], wrapping OpenSSL.

CSCoin—Contract size: ∼200 lines
Operation µ [ms] σ [ms] size [B]
createAccount [g] 4.845 ± 0.683 512

[c] 0.022 ± 0.005 -
authTransfer [g] 4.986 ± 0.684 1114

[c] 5.750 ± 0.474 -
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Fig. 9. The effect of the number of nodes per shard on transaction throughput.
(Shards: 2, inputs per transaction: 1, input-to-shard mapping: random. Repeats:
20.)

The user needs to generate a signing key pair to create an
account in the CSCoin contract, which takes about 5 ms.
However, verifying the account creation only requires to
check the transaction’s format, and it is therefore very fast.
Transferring money is a little more expensive due to the need to
sign the amount transferred and the beneficiary, and verifying
the signature in the checker.

SMet—Contract size: ∼200 lines
Operation µ [ms] σ [ms] size [B]
createMeter [g] 4.786 ± 0.480 ∼600

[c] 0.060 ± 0.003 -
addReading [g] 5.286 ± 0.506 ∼1100

[c] 5.965 ± 0.697 -
computeBill [g] 5.043 ± 0.513 ∼1100

[c] 5.870 ± 0.603 -

Similarly to CSCoin, creating a meter requires generating a
cryptographic key pair which takes about 5 ms, while verifying
the meter’s creation is faster and only requires checking the
transaction’s format. Adding new readings takes about 5 ms,
as the user needs to create a signed commitment of the
readings which requires elliptic curve operations and an ECDSA
signature. Computing the bill takes slightly longer (5.8 ms), and
involves homomorphic additions, and verifying the bill involves
checking a zero-knowledge proof of the billing calculation.

SVote—Contract size: ∼400 lines
Operation µ [ms] σ [ms] size [B]
createElection [g] 11.733 ± 1.028 ∼1227

[c] 11.327 ± 0.782 -
addVote [g] 14.086 ± 1.043 ∼2758

[c] 28.178 ± 1.433 -
tally [g] 253.286 ± 7.793 ∼1264

[c] 11.589 ± 0.937 -

The SVote contract is more expensive than the others since
it extensively uses zero-knowledge proofs and more advanced
cryptography. For simplicity, this smart contract has been tested
with three voters and two options. First of all, creating a
new election event requires building a signed homomorphic
encryption of the initial value for each option, and a zero-

knowledge proof asserting that the encrypted value is zero;
this takes roughly 11 ms to generate the transaction and to
run the checker. Next, each time a vote is added, the user
proves two zero-knowledge statements—one asserting that she
votes for exactly one option and one proving that her vote is a
binary value—and computes an ECDSA signature on her vote,
which takes about 11 ms and generates a transaction of about
2.7 kB. Verifying the signature and the two zero-knowledge
proofs are slower and takes about 30 ms. Finally, tallying is the
slowest operation since it requires to decrypt the homomorphic
encryption of the votes’ sum.

VIII. LIMITATIONS

Chainspace has a number of limitations, that are beyond
the scope of this work to tackle, and deferred to future work.

The integrity properties of Chainspace rely on all shards
managing objects being honest, namely containing at most f
fault nodes each. We have chosen to let any set of nodes can
create a shard. However, this means that the function φ(o)
mapping objects to shards must avoid dishonest shards. Our
isolation properties ensure that a dishonest shard can at worse
affect state from contracts that have objects mapped to it. Thus,
in Chainspace, we opt to allow the contract creator to designate
which shards manage objects from their contract. This embodies
specific trust assumptions where users have to trust the contract
creator both for the code (which is auditable) and also for
the choice of shards to involve in transactions—which is also
public.

In case one or more shards are malicious, we provide an
auditing mechanism for honest nodes in honest shards to detect
the inconsistency and to trace the malicious shard. Through
the Hash-DAG structure it is also possible to fully audit the
histories of two objects, and to ensure that the validity rules
hold jointly—in particular the double-use rules. However, it
is not clear how to automatically recover from detecting such
an inconsistency. Options include: forcing a fork into one or
many consistent worlds; applying a rule to collectively agree
the canonical version; patching past transactions to recover
consistency; or agree on a minimal common consistent state.
Which of those options is viable or best is left as future work.

Checkers involved in validating transactions can be costly.
For this reason we allow peers in a shard to accept transactions
subject to a SCCoin payment to the peers. However, this
‘flat’ fee is not dependent on the cost or complexity of
running the checker which might be more or less expensive.
Etherium [Woo14] instead charges ‘gas’ according to the cost of
executing the contract procedure—at the cost of implementing
their own virtual machine and language.

Finally, the S-BAC protocol ensures correctness in all cases.
However, under high contention for the same object the rate
of aborted transactions rises. This is expected, since the S-
BAC protocol in effect implements a variant of optimistic
concurrency control, that is known to result in aborts under
high contention. There are strategies for dealing with this in the
distributed systems literature, such as locking objects in some
conventional order—however none is immediately applicable
to the byzantine setting.
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IX. COMPARISONS WITH RELATED WORK

Bitcoin’s underlying blockchain technology suffers from
scalability issues: with a current block size of 1MB and 10
minute inter-block interval, throughput is capped at about 7
transactions per second, and a client that creates a transaction
has to wait for about 10 minutes to confirm. In contrast,
mainstream payment processing companies like Visa confirm
transactions within a few seconds, and have high throughput
of 2000 transactions per second on average, peaking up to
56,000 transactions per second [vis]. Reparametrization of
Bitcoin—such as Bitcoin-NG—can improve this to a limited
extent up to 27 transactions per second and 12 second latency,
respectively [CDE+16]. More significant improvement requires
a fundamental redesign of the blockchain paradigm.

The most comparable system to Chainspace is Om-
niLedger [KJG+17]—that was developed concurrently—and
provides a scalable distributed ledger for a cryptocurrency, and
cannot support generic smart contracts. OmniLedger assigns
nodes (selected using a Sybil-attack resistant mechanism) into
shards among which state, representing coins, is split. The node-
to-shard assignment is done every epoch using a bias-resistant
decentralized randomness protocol [SJK+16] to prevent an
adversary from compromising individual shards. A block-DAG
(Directed Acyclic Graph) structure is maintained in each shard
rather than a single blockchain, effectively creating multiple
blockchains in which consensus of transactions can take place
in parallel. Nodes within shards reach consensus through the
Practical Byzantine Fault Tolerant (PBFT) protocol [CL+99]
with ByzCoin [KJG+16]’s modifications that enable O(n)
messaging complexity. In contrast, Chainspace uses BFT-
SMART ’s PBFT implementation [SB12] as a black box,
and inherits its O(n2) messaging complexity—however, BFT-
SMART can be replaced with any improved PBFT variant
without breaking any security assumptions.

Similar to Chainspace, OmniLedger uses an atomic commit
protocol to process transactions across shards. However, it uses
a different, client-driven approach to achieve it. To commit
a transaction, the client first sends the transaction to the
network. The leader of each shard that is responsible for the
transaction inputs (input shard) validates the transaction and
returns a proof-of-acceptance (or proof-of-rejection) to the
client, and inputs are locked. To unlock those inputs, the client
sends proof-of-accepts to the output shards, whose leaders
add the transaction to the next block to be appended to the
blockchain. In case the transaction fails the validation test, the
client can send proof-of-rejection to the input shards to roll
back the transaction and unlock the inputs. To avoid denial-
of-service, the protocol assumes that clients are incentivized
to proceed to the Unlock phase. Such incentives may exist
in a cryptocurrency application, where coin owners only can
spend them, but do not hold for a generalized platform like
Chainspace where objects may have shared ownership. Hence,
Chainspace’s atomic commit protocol has the entire shard—
rather than a single untrusted client—act as a coordinator. Other
related works include improvements to Byzantine consensus for
reduced latency and decentralization [Buc16, Maz15, SYB14],
but these do not support sharding.

Elastico [LNZ+16] scales by partitioning nodes in the
network into a hierarchy of committees, where each committee
is responsible for managing a subset (shard) of transactions

consistently through PBFT. A final committee collates sets
of transactions received from committees into a final block
and then broadcasts it. At the end of each epoch, nodes are
reassigned to committees through proof-of-work. The block
throughput scales up almost linear to the size of the network.
However, Elastico cannot process multi-shard transactions.

RSCoin [DM16] is a permissioned blockchain. The central
bank controls all monetary supply, while mintettes (nodes
authorized by the bank) manage subsets of transactions and
coins. Like OmniLedger, communication between mintettes
takes place indirectly, through the client—and also relies on
the client to ensure completion of transactions. RSCoin has
low communication overhead, and the transaction throughput
scales linearly with the number of mintettes, but cannot support
generic smart contracts.

Some systems improve transaction latency by replacing
its probabilistic guarantees with strong consistency. Byz-
Coin [KJG+16] extends Bitcoin-NG for high transaction
throughput. A consensus group is organized into a commu-
nication tree where the most recent miner (the leader) is at
the root. The leader runs an O(n) variant of PBFT (using
CoSI) to get all members to agree on the next microblock.
The outcome is a collective signature that proves that at least
two-thirds of the consensus group members witnessed and
attested the microblock. A node in the network can verify in
O(1) that a microblock has been validated by the consensus
group. PeerConsensus [DSW16] achieves strong consistency by
allowing previous miners to vote on blocks. A Chain Agreement
tracks the membership of identities in the system that can vote
on new blocks. Algorand [Mic16] replaces proof-of-work with
strong consistency by proposing a faster graded Byzantine fault
tolerance protocol, that allows for a set of nodes to decide on
the next block. A key aspect of Algorand is that these nodes
are selected randomly using algorithimic randomness based
on input from previously generated blocks. However, none of
those systems are designed to support generic smart contracts.

Some recent systems provide a transparent platform based
on blockchains for smart contracts. Hyperledger Fabric [Cac16]
is a permissioned blockchain to setup private infrastructures for
smart contracts. It is designed around the idea of a ‘consortium’
blockchain, where a specific set of nodes are designated to
validate transactions, rather than random nodes in a decentral-
ized network. Each smart contract (called chaincode) has its
own set of endorsers that re-execute submitted transactions to
validate them. A consensus service then orders transactions
and filters out those endorsed by too few. It uses modular
consensus, which is replaceable depending on the requirements
(e.g., Apache Kafka or SBFT).

Ethereum [Woo14] provides a decentralized Turing-
complete virtual machine, called EVM, able to execute smart-
contracts. Its main scalability limitation results from every
node having to process every transaction, as Bitcoin. On the
other hand, Chainspace’s sharded architecture allows for a
ledger linearly scalable since only the nodes concerned by
the transaction—that is, managing the transaction’s inputs or
references—have to process it. Ethereum plans to improve
scalability through sharding techniques [BCWD15], but their
work is still theoretical and does not provide any implementation
or measurements. One major difference with Chainspace is
that Ethereum’s smart contract are executed by the node,
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contrarily to the user providing the outputs of each transaction.
Chainspace also supports smart contracts written in any kind
of language as long as checkers are pure functions, and
there are no limitations for the code creating transactions.
Some industrial systems [tez17, roo17, cor17] implement
similar functionalities as Chainspace, but without any empirical
performance evaluation.

In terms of security policy, Chainspace system implements
a platform that enforces high-integrity by embodying a variant
of the Clark-Wilson [CW87], proposed before smart contracts
were heard of.

X. CONCLUSIONS

We presented the design of Chainspace—an open, dis-
tributed ledger platform for high-integrity and transparent
processing of transactions. Chainspace offers extensibility
though privacy-friendly smart contracts. We presented an in-
stantiation of Chainspace by parameterizing it with a number of
‘system’ and ‘application’ contracts, along with their evaluation.
However, unlike existing smart-contract based systems such as
Ethereum [Woo14], it offers high scalability through sharding
across nodes using a novel distributed atomic commit protocol
called S-BAC, while offering high auditability. We presented
implementation and evaluation of S-BAC on a real cloud-
based testbed under varying transaction loads and showed that
Chainspace’s transaction throughput scales linearly with the
number of shards by up to 22 transactions per second for
each shard added, handling up to 350 transactions per second
with 15 shards. As such it offers a competitive alternative to
both centralized and permissioned systems, as well as fully
peer-to-peer, but unscalable systems like Ethereum.
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